《简便计算》教学反思

2021-09-18 教学反思

  作为一位到岗不久的教师,教学是重要的任务之一,通过教学反思可以快速积累我们的教学经验,快来参考教学反思是怎么写的吧!以下是小编为大家收集的《简便计算》教学反思,欢迎大家分享。

《简便计算》教学反思1

  满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!

  到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。

  这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。

  然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!

  这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。

《简便计算》教学反思2

  分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。

  回顾了这节课的教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:一是混合运算和简便计算题混淆,乱用简便运算。二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。三是分数加减法混合运算与分数乘法计算混淆。

  针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。

《简便计算》教学反思3

  一、调整教材顺序,促进有效教学

  “乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。

  二、设计对比练习,促进有效教学

  在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。

  学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。

  如,463+82+18,463-82-18,463-82+18

  9600×25×49600÷25÷49600÷25×4

  三、进行逆向训练,促进有效教学

  逆向运用

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

  四、加强应用训练,促进有效教学

  例1、求下列图形“L型”菜地的面积;

  9厘米21厘米9厘米

  例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?

  例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。

  1、学校一共买了多少个羽毛?

  25×12

  =25×4×3

  2、买羽毛球一共花了多少元?

  32×25

  =8×4×25

  3、每枝羽毛球拍多少元?

  330÷5÷2

  五、加强错例分析,促进有效教学

  例1:25×32×125例2:32×125

  =25×4+8×125=4×(8×125)

  =4×8×4×125

  例3:463-82+18例4:9600÷25×4例5:25×(400+4)

  =463-(82+18)=9600÷(25×4)=25×400+4

《简便计算》教学反思4

  ⑴学会尊重——提供适宜的生成环境

  学生是学习的主体,课堂设计要以学生的生活为主线,我以小明过“六一”节买食品为情景作为切入点,显得自然而又有诱惑力。另外在探究计算的过程中,充分尊重学生的原有认知水平,放手让学生自主探究不同的计算方法,进而体会整数加减法运算定律和性质对小数也同样是适用的,这样知识就自然生成。

  ⑵细研教材——充分挖掘潜隐信息

  本节课是在充分吃透教材基础之上设计出来的,比如教材例题只是点出整数加法定律对小数同样适用,但并没有明确说出小数减法的情况及如何发现简便算法这两点,但两点又是至关重要的,所以我设计时注重引导学生发现小数凑成整数的特点,并拓展到小数减法的情况,充分的挖掘了教材中深层的信息。

  ⑶注重生成——积淀宝贵经验

  对于学生生成的资源,老师要善于运用。比如:在学生发现两个小数结合相加可以凑成整数时,老师要积极的引导积淀,再如,学生在做第一个练习时,学生会生成两个小数相加或相减结果是整数时的特征这个知识点,这对学生找到简便计算方法很重要。所这时老师要积极引导学生积淀这些宝贵的经验。

《简便计算》教学反思5

  四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:

  一、学会寻找题目的特点。

  (1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。

  例如:25、36,把36写成4×9。变成25×4×9,使计算简便。

  (2)把接近整数的写成整数和一个一位数相加减。

  例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。

  (3)寻找能凑成整数的数,把它们相加减。

  例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。

  例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。

  二、巧妙运用简便计算。

  简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。

  例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4

  三、注重题目的对比。

  有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。

  例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律

  例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。

  总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。

《简便计算》教学反思6

  由于有实际生活做为知识的支撑点,因此学生较顺利的掌握了新知。但发现还是存在两个计算上的错误:

  一、审题不认真,学习欠灵活

  如“做一做”中545-167-145学生无视题中数字的特点,仍旧把167与145相加,没有意识到把两个减数相加并不简便。

  减法运算性质是用来使计算简便的,并不是所有的连续减这样的计算题就要用减法运算性质,而且在运用减法运算性质时也要注意数之间的'关系,然后再选择最佳方案来运算。通过今天的学习,促发学生在分享学习成功的同时,不仅让学生以成功者的身份介绍提炼知识点,而且着重组织引导学生对学习方法的回忆,数学思想予以关注。这样,知识技能、过程与方法、情感态度价值观三维目标整合体系得以较为完美的呈现。以后在计算时要学会观察,再决定方法。多猜想,多验证,其实许多数学家也是这样发现数学规律的。

  二、应用意识薄弱

  如果单一地出示计算题,学生会应用各种定律进行简算,但是遇到应用题,学生在列出算式后,没有就用定律进行简算的意识,照样按运算顺序进行计算。

  另外,教学后发现减法运算性质的内容不是很多也不难,但是教学过程中还是有处理不当的地方。我发现一些需要重点强调的地方时间花的过少。组织教学耗费了一些时间与精力难免使教学重点不够突出。探究减法运算性质时过于草率,没有及时有效的练习与巩固。再有请能力比较弱的学生回答问题也造成时间上的浪费。因而班上一些理解比较慢的学生掌握的还是不好,特别是减法运算性质逆用.

《简便计算》教学反思7

  教学加减法、乘除法的运算定律,学生对单纯的运算定律能有个初步的理解,但是对实际计算中运算定律的运用不能灵活地加以运用,对这节的教学我有以下几点想法:

  1、充分利用学生已有的感性认识,促进学习的迁移。

  对于小学生来说,运算定律的概括具有一定的抽象性。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

  对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流,相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。

  3.注重教学内容的现实性。

  (1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课首先引导学生观察身边的现象,渗透变与不变的的观点;采撷生活数学的实例。引导学生产生疑问,同时激发学生大胆探索的兴趣。

  (3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。

《简便计算》教学反思8

  整数简便运算中学习了乘法交换律、乘法结合律、和乘法分配律。通过课前让孩子回忆,复习了分别用字母怎样表示,并通过实际的题让孩子们练一练整数乘法中简便运算,但给孩子们写出两道用简便方法计算的小数运算时,孩子们能够想到整数中25 *4 =100 125* 8=1000 25*8=200等经常记住的结论。

  在小数中孩子们0。25遇到4也会把它结合在一起,遇到202 、101也会想到用分配律计算,但是遇到0。34*0。5*0。6= 时有点束手无策,只能让孩子观察末尾数字能否凑十,而且选择时还得考虑与水结合简单,所以小数中的简便方法需要练习。

《简便计算》教学反思9

  反思一:教学应该更多的关注美感,学生的情感。

  《数学课程标准解读》有这样一段:作为学生的一般性发展的数学学习,应该更多的关注学生的情感因素。事实上,健康的富有活力的学习活动,独立思考与合作交流的学习方式,自信以及相反尊重的学习氛围非常有利于学生非智力因素与智力因素协调发展,有益于健康人格的形成。由此可见,教学中关注学生情感的重要。

  本节课的情景创设的目的是为了激起全班学生的情感共鸣,通过差生比优生算得块的意外,吸引学生的注意力,激发学生的学习兴趣,积极思考发现题目特征,理解简便算法的实质是“凑整”。教育家赞可夫说“教学法一旦触及学生的情绪和意志领域,触及学生的精神需要,这种教学法就发挥高度有效的作用”。对于多数学生而言,课的设计达到了预期的效果,但是当时我看到优生那哭泣的表情,差生体现出的荣辱不惊时,我知道对他们我失败了,显然这不是他们的精神需要。

  反思二:教学中应该考虑学生更多的鼓励,对优势进行挫折教育。

  差生体现出荣辱不惊时我想到了小学数学教育网上讲的一个意义深刻的故事:一位老教师到市场上买菜,遇到当年他教育过的一个做小生意发财的学生,正在卖鸡蛋的学生热情地邀请老师去吃饭,老师说:“卖鸡蛋这样的工作你不觉得难为情吗?”学生说:“这和当年你教育我的情形相比,我觉得算不了什么”

  这个故事主要讽刺了老师对待差生教育行为,是值得我们反思的,正如学生比赛赢了也不敢伸张。是啊,我们真的应该给他们更多的阳光,不仅让他们可以经受挫折,还能正常的沐浴灿烂的阳光,拥有健康的人格。

  从另一个层面看:学生得益最大的竟然是老师的关照,他在无数次的挫折和打击面前变得坚强,而这种品质将使他终身受益。所以挫折教育是人生重要的一课,而学习上的一帆风顺的优生,却很少遭受挫折,所以才会在一次不正规的比赛中哭泣。有人专门研究过国外的293个著名文艺家的传记,发现其中有127人在生活中都遭受过重的的挫折。“自古英雄都是梦,从来纨绔少伟男”的说法,表面有成绩的人大多是有磨难而成的。孟子指出:“天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,……”这些都表明挫折教育是儿童成长中不可缺少的营养,对于优生也是如此。

《简便计算》教学反思10

  本节课一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。在第一节课的教学中,在揭示运算律的意义时,也曾提到过,但只是点到为止。在本节课中是作为重点来讲的。所以在教学时,要着重体现出学生运用加法运算律进行简便计算的探索过程。

  一、加强了对比的力度(运用运算律和不运用运算律在计算上的对比)。

  例如在教学例题:29+46+54时,首先让学生尝试自行解决,大部学生根据已有的知识,知道应该从左往右计算,先算29+46=75,75+54=129。少部分学生通过观察发现46+54能凑成100,可以先加起来:29+46+54=29+(46+54)。将两种做法让学生书写在黑板上,让学生进行观察比较。追问:第二种方法正确吗?为什么可以先计算46+54呢?(生:可以凑成100,整百数再加一个数就简便了。)这样对比的结果是显而易见的,使学生清楚地认识到进行简便计算是运用运算律的结果,同时学生也能体会到运算律的价值所在。

  二、小组活动,巧妙安排,得出规律。

  新课改提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当学生的学习兴趣被激起,强着发表自己的意见时,我提出让学生通过小组合作,去验证自己的猜测,这是符合学生的内心需要的,他们需要动笔计算证实自己的想法,需要同伴合作及时解决问题,需要通过事实来证明自己是对的。合作不是盲目的,由于合作前的充分酝酿,学生都积极投入到小组学习中。而且在合作前,我给学生提出要分工合作,使学生的活动能够有序进行。合作是成功的,先是紧张的举例验证,然后是有效的总结交流。规律的得出顺理成章,同学们体验到了探究的乐趣,体尝到了成功的快乐。我也体会到了教学的乐趣。

《简便计算》教学反思11

  连减法的简便运算这节课,我用的是导学课的模式进行组织教学的,首先我进行的口算练习,有利于本节课学生在计算时提高速度,本节课我是先出示了导学提纲,让学生进行自主学习,再进行讨论交流算法,“由此你发现了什么”可以使学生由具体算式,发展到一般情况,锻炼了学生的探索规律,进行总结的能力。我担心有的学困生不能做到完全总结,我出示了“友情提示”给出提示语,让学生思考、总结,收到了良好效果,再出示规律,学生齐读掌握了重点,通过反馈精讲,使学生更加清晰了简算的要点,所有同学都能学会,我还在最后的时候,出示了能力提升题,使不同学生得到不同层次的提升。在备课过程中进行了精心的准备,还运用了多媒体教学,学生的兴趣也很高,注意力更集中,运算过程可以大量演示,效果比较好。

  我在四年一班上了一节同样的课,课堂结束后,听课教师对本堂课的评价较好,我自己也对本节课的教学效果感到满意。然而在同学年的二班讲授时,效果却不尽如人意。在教学一开始的时候探究减法运算性质时过于拖沓,虽然花的时间比较多,我也关注了班级的学困生,但是他们中的个别学生掌握的还是不好,在让学生上前面板书的时候,减法运算性质逆用这样的题型,个别学生能力比较弱,不能逆向思维,这也造成时间的浪费。

  所以在上二班的课时,我都有点困扰,因为我总是把握不准班级差异,也许是对学生的了解还不够吧,所以在今后的教学工作中,在精心备课的同时,还应该备学生,认真分析学情,设计教案,应因班级,因学情而有所不同,从而使所有的学生都能够学会知识,提高能力。

《简便计算》教学反思12

  简便计算是小学计算教学中的重要组成部分,《简便计算》教学反思。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。

  这几周我一直在教学简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,随着简算方法的多样化,简算的准确性也大打折扣。于是,我开始困惑、开始思考、我开始发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

  于是,我让学生做了大量的直接简算的题。(我认为计算达不到一定的练习量是不行的)通过练习,引导学生总结出一些常见的可以简算的对象,如:“25与4相乘”、“125与8相乘”、“5与任何双数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。

  “运用乘法分配律进行简算”是学生最不容易掌握的。根据以前的教学我发现,其实学生在真正的生活情境中还是会自觉的用乘法分配律的。比如算几套课桌椅价钱的问题,学生会列出两种不同的算式,也就是渗透了乘法分配律的思想,教学反思《《简便计算》教学反思》。我在教学内容这部分时,学生确实很难达到自觉地运用分配律去计算,特别是一些变式就更加的困难了。我认为主要原因就是学生没有自觉观察算式特点的习惯。学生对于计算的目的是得到答案,而忽略了计算的过程,这也跟我平时的教学习惯有很大的关系。

  有这样一道题(80+8)×25,学生完成后,我随即将该题改为“88×25”让学生做,学生做出了两种答案:①、88×25=80×25+8×25=20xx+200=2200;②、88×25=11×(8×25)=11×200=2200。我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与25相乘,最后再乘11。

  听完学生的介绍后,我进行了总结,首先肯定了两种答案的正确,然后对两种答案进行了分析:两种答案的共同之处在于都发现了8与25相乘非常简便,可以凑整。于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处。

  最后强调:简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。这样教学,不仅使学生学会了单纯的简便运算,更重要的是,使学生初步理解了学以致用的道理,真正理解了书本上的知识必须运用到实际当中去的道理

《简便计算》教学反思13

  这是一节计算课,本节课是在理解与掌握加法与乘法的运算定律的基础上,学习四则运算中的简便算法的第一节课。本节课的设计和处理,教学反思:

  1、尊重学生的个性差异,注重算法多样化。

  传统的计算教学很枯燥、乏味,本节课我从学生熟悉的生活情境入手,引出要解决的问题,激发了学生主动探究的欲望。之后,把问题抛给学生,让学生利用自己的生活经验和已有的知识尝试解决“还剩多少页没有看?”这个生活中常见的数学问题。由于学生的已有的生活经验和知识基础的不同,他们对问题的解决方法也不一样,我充分尊重学生的意见,最后得出三种解法【234-66-34,234-(66+34),234-34-66】,并鼓励学生从这三个算式中自主选择喜欢的一个算式来进行计算,并让学生说说为什么选择了这个算式,突出了学生的主体地位,学生学习的兴趣在瞬间被激活,并总结出简便运算的方法。

  在这一过程,学生亲身经历了知识的形成过程,学生不但有效地获得数学思想方法,感知解决问题策略的多样化,即促进学生探究问题能力的提高,又促进学生的全面发展。

  2、在精心设计地实际问题解决过程中锤炼学生的情感。

  以前,我总是习惯自己多讲,对血色很难过不放心,今天我给学生提供了乐于探索的平台,学生们充分展示出了善于交流的才华,真挚地流露出了敢于评判的情感,课堂不再是教师表演的舞台。教师从台前退到了幕后,学生真正成为了学习的主人。

  我觉得这个是今天最大的收获。

《简便计算》教学反思14

  简便计算相对于普通的四则混合运算来说既又它讨人喜欢的地方又有让人头痛的方面。简便计算对于学有余力的学生来说是比较简单的,运用了运算定律后,计算变得很简单。但是对于一部分学困生来说是非常复杂,难理解的。特别是乘法分配律的运用,总有一些学生理解起来有一定的难度。

  为了让这堂课上得扎实有效,本课设计了两个环节:

  (1)复习运算定律;

  (2)运用运算定律进行简便运算。

  在复习运算定律时,让学生通过自主梳理运算定律,并从不同的角度去思考,进行分类比较,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,改变以往的做法,出示学生课前测试中简便运算出错的题目以及一题多解的典型题目。接着又出示学生课前自己搜集的错题让学生分析错误,这样学生积极性更高了,学生在选题时要进行大量的阅读,这本身就是一个自我复习的过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:

  (1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。

  (2)关注了学生易错的题目。

  (3)关注了一些生僻的解法。

  我们要相信学生,给学生一个舞台学生会还你一片精彩。最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,学生如果做的好,采取一些鼓励机制,如加分或加星等。整堂课下来学生的精力高度集中,教学效果也好。

《简便计算》教学反思15

  运算定律与简便计算,共包括了五个定律和两个性质:

  加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

  连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

  大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

  1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

  34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

  2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

  3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

  4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

  5.针对逆向运用,有以下规律

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

上一篇:《数一数》教学反思 下一篇:《索桥的故事》教学反思