作为一名优秀的教师,我们要在教学中快速成长,写教学反思可以快速提升我们的教学能力,来参考自己需要的教学反思吧!下面是小编为大家收集的《三角形的面积》教学反思(精选12篇),仅供参考,大家一起来看看吧。
《三角形的面积》教学反思1
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习了平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习了平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
《三角形的面积》教学反思2
三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础,三角形面积计算的教学着重要求学生通过动手操作、合作探究出三角形面积计算公式,
从而加深三角形与已学图形之间的联系。重点在于理解三角形公式的推导过程,会根据公式进行计算,还要强调学生不能忽略三角形面积公式中除以2。
上课前我带领学生一起复习我们所学过的图形的面积公式,长方形面积=长宽,S=ab,正方形面积=边长边长,S=a2,平行四边形面积=底高,S=ah。然后引导学生回忆平行四边形是如何推导出来的,沿着平行四边形的任意一条高剪开,通过平移后得到长方形,长方形的面积和原平行四边形的面积相等,长方形的长等于原平行四边形的底,长方形的宽等于原平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。帮助学生回忆转化的教学思想,并直接引出课题,开门见山。
让学生拿出提前准备好的各种三角形,六人一组,动手拼一拼,想一想,怎么把三角形转化成我们所学过的图形。这一活动安排主要是为学生提供一个开放的空间,让学生亲身经历自主探索的过程。当同学们都拼好之后,我找个别小组介绍他们是怎么拼的,第一小组汇报,学生告诉我,他们是用两个锐角三角形拼成的一个平行四边形。我随即拿了两个不一样大小的锐角三角形拼在一起,问学生,为什么我拼不成?学生立马就能指出因为它们形状不一样大。然后引导学生指出是两个完全相同的三角形,加深学生对完全相同的理解。第二组是用两个完全相同的钝角三角形拼出的平行四边形,第三组是两个完全相同的直角三角形拼出了长方形。让学生继续讨论,这几种拼法有
什么共同点,在交流比较中概括出结论,即用两个形状完全相同的三角形拼出一个平行四边形,当学生指出所拼出的都是平行四边形时,我设下问题,直角三角形拼出的不是长方形吗?学生一起告诉我长方形是特殊的平行四边形,加深学生对长方形和平行四边形的关系的理解。当学生把三角形和平行四边形联系起来时,引导学生去共同发现三角形和所拼成的平行四边形之间的关系,它们等底等高,每个三角形的面积是所拼成的平行四边形面积的一半,让学生自己去体验,加深学生对三角形计算公式的深刻理解。并且强调为什么要除以2。根据平行四边形公式让学生自己总结三角形面积公式=底高2,S=ah2。
《三角形的面积》教学反思3
本节课是在学生已掌握了长方形、正方形、平行四边形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
在教学中我力求突破传统教学的模式,充分体现以“学生发展为本”的教学理念,在获取新知的过程中大胆放手,引导学生自主探索,培养学生的创新意识和实践能力。通过创设情境,激发学生探索的欲望。数方格的方法是求三角形面积的一种方法,但不是最普通适用的方法,为了引起学生对探索三角形面积产生强烈的欲望,在学生用数方格的方法求平行四边形、三角形面积的基础上,我有意出示一块很大很大的草地,问学生还能用数方格的方法求它的面积吗?从而激发学生初步探究。
引导学生结合复习环节中的平行四边形面积的推导过程,想到把三角形转变成已学过图形的面积进行计算。组织学生在操作中探索三角形面积的计算方法。课前我请学生准备了一些三角形,课中让学生自由选择一种三角形(锐角,直角,钝角三角形),用剪一剪,拼一拼,摆一摆,移一移等方法进行操作、探索,在学生展示出各种转化图形后,引导学生主动探索、观察、发现、讨论、交流研究图形与已学图形之间的内在联系,大胆推导三角形的面积计算公式,培养了学生的自主创新精神。经历探索之后的获得的成功,是另人快乐的,学生对数学的感受是美好的,这正是我们教师的期待,放手让学生去做、去发现、去探索,让学生体会到成功的快乐。
《三角形的面积》教学反思4
《三角形的面积》是人教版五年级上册第六单元《多边形面积》中的内容,《三角形的面积》教学反思和谐小学吴凤琴。本节内容的教学目标可以定位两个:1、通过拼一拼,探索并掌握三角形的面积计算公式,会计算三角形的面积。2、能用公式解决简单的实际问题。这两个目标也是本节课的'重难点。
对于第三代导学案的使用,我们一直处于探索中,边使用变改动,但都是根据学情来确定的。这节的课教学设计我是在检查了学生的预习情况后稍作了调整后进行的。在检查了学生的预习情况后,对于温故知新中的做钝角三角形的高一题我看学生做对的有两三个人,就临时加了处理这道题的环节,平时只让学生对改更正,不作处理。然后回顾了新课先知中本节课的难点,探索拼成的平行四边形和原来三角形的关系,然后看怎样得出三角形的面积公式。接下来进行分层训练。最后总结,教学反思《《三角形的面积》教学反思和谐小学吴凤琴》。一节课下来,总结得失有如下几点:
一、本节课的成功之处:
1、由于预习较充分,学生都能用转化思想讲出三角形面积公式的探索过程,虽然语言不是那么简练,这说明学生确实经过了思考,交流。
2、这也是我没有预料到的,学生的自信,敢于质疑。在在分层训练中,李嘉瑶写出并讲述了分层训练(二)中第1小题的思考过程后,本人认为她讲的非常精彩,可是当她讲完后随即就有同学质疑,周万里说她写的语言不够准确,应该是拼成的平行四边形,少写了拼成一次,宫浩真说应该用他的那种解法最好,于是我就对比了两种解法,让同学们评判,从中选出了最优解法。
本节课的不足之处:
1、教师本人的总结语言欠精炼。在学生探索出三角形面积公式后,表述拼成的平行四边形和原来三角形的关系时,应该总结出它们是等底等高,所以三角形的面积是底×高÷2,我总结的比较啰嗦。所以在教学中还要继续提炼语言的准确、精炼程度。
2、小组交流不太充分。在探索面积公式时学生进行了交流,在分层训练时,没有让学生在互讲思考过程。这一点在今后教学中还要特别注意,不能只重展示轻交流。
《三角形的面积》教学反思5
在这次活动中,我执教《三角形的面积》这节课针对这节课我有如下反思:
由于有了探究平行四边形面积的方法,课堂上我放手让学生利用手中的学具探究三角形的面积计算公式。学生积极思考积极探究,想到了把两个完全一样的三角形,拼成一个平行四边形,三角形的高与底分别与拼成的平行四边形的高与底相等。拼成的平行四边形的面积是三角形面积的2倍,再根据平行四边形的面积公式,推导出三角形的面积公式。同位之间进行交流,进一步理解推导过程。最后通过练习巩固所学。这是这节课的优点,把学生当成了学习的主人,留给学生足够的时间与空间进行探索交流。
在教学中存在着很多不足:
1、时间分配不够合理,留给学生探究的时间过多,导致后面练习总结的不够,使学生巩固的不够。
2、学生在与同位交流时,还算积极,但是在汇报交流时,大部分学生不愿意分享自己的看法,导致老师说得多,学生领会的不够。我觉得我存在的问题是没有想办法调动学生回答问题的积极性,可能是对学生了解不够造成的。
3、可能受平行四边形面积推导的影响,部分学生也沿着三角形的高剪开,再拼起来,一般的的三角形拼成了不规则的四边形,只有等腰三角形剪开后才拼成了平行四边形或长方形,出现这种情况,我觉得手忙脚乱,心里明白怎样给学生解释,但是力不从心,可能是心理素质的原因,害怕听课的老师笑话。
总之,我觉这节课很不成功,有许多地方值得继续研究,向用经验的老师请教,以这次讲课为教训,反思自己存在的不足,努力提高自己的教学水平,努力做一名合格的教师。
《三角形的面积》教学反思6
《三角形的面积》这节课是这节课是在学生已经学习了平行四边形面积的基础上进行的,在教学时,上课的前一天我布置了预习作业:1、剪一剪,每人剪一对完全相同的三角形(我把学生分为四组,一组的同学每人剪一对完全相同的锐角三角形,二组每人剪一对完全相同的钝角三角形,三组每人剪一对完全相同的直角三角形,四组每人剪一对完全相同的等腰直角三角形)。2、拼一拼,将剪好的两个三角形拼一拼,能否拼成一个平行四边形。3、观察,拼成的平行四边形和三角形之间有怎样的关系?4、想一想,三角形的面积公式怎样表示?
课的开始,我先检查学生的预学情况,提问:谁知道三角形的面积公式?学生生纷纷举手回答,接着,我又问:你是怎知道的?多数学生脸上一片茫然,于是带着疑问,学生走进了课堂。
课堂中,我开展了学生动手活动,活动一:我让学生分组展示课前剪拼的图形,一组同学拼成了一个平行四边形,二组同学也拼成了一个平行四边形,三组同学拼成了一个平行四边形或长方形,四组同学拼成了一个平行四边形或正方形。通过学生展示,不难发现,两个完全相同的三角可以拼成一个平行四边形(长方形和正方形也属于特殊的平行四边形),接着,我引导学生观察发现:拼成的平行四边形的面积是三角形面积的2倍,三角形的面积是平行四边形面积的一半。而且,其中的一个三角形和拼成的平行四边形是等底等高的,因此得出三角形的面积公式是:三角形的面积=底×高÷2,用字母表示s=ah÷2。接着我进行第二个活动:我让一组和三组,二组和四组的同学,每人交换自己手上其中的一个三角形,看看,交换后的两个三角形能否拼成一个平行四边形,学生很快发现,不能拼成一个平行四边形,原因很简单,两个形状不同三角形不能拼成一个平行四边形。也就是说,必须是完全相同的两个三角形才能拼成一个平行四边形。最后我进行第三活动:我让一组的同学拿出一个三角形和二组的同学拼成的平行四边形作比较,三组的同学拿出你的一个三角形和四组同学拼成的平行四边形作比较,看看你的三角形面积是不是他拼成的平行四边形面积的一半,学生很快做出正确判断,不是。那你知道这是为什么?学生很纳闷,于是,我让学生四人小组共同探讨,不一会儿,有的学生就发表自己的看法,因为我的三角形和他那个平行四边形不是等底等高的,所以我的三角形的面积不是他的平行四边形面积的一半,于是,同学们得出结论:等底等高(或同底等高)的三角形的面积是平行四边形面积的一半。强调:等底等高。
这节课下来,我觉得我教的很轻松,学生学的很愉快。回顾整个堂课,我发觉学生真正是课堂的主人,教师真正是课堂的组织者、引导者。学生的学习是积极的、主动地,而不是被动的。猛然间,我意识到这样的精彩课堂来源于我将课前预习落到了实处,学生从课前预学到参与课堂活动,他们经历了对新知识的发现,对问题的思考,对结论的概括。同时,教师精心指导,生生交流,展示他们对知识的理解和认识,教师在课堂中适时点拨,梳理学生预学中的的盲点。既突出了重点,又突破了难点。课堂效果良好。由此可见,学生课前预学至关重要,课前预学为落实学生成为课堂的的主人提供了保障。学生课前预学是课堂教学的前提和基础,是课外到课内的桥梁和纽带。学生参与课前预学不但对新知识有了一定的了解,而且好奇心促使学生对新知识进一步思考、探究、发现问题。然后带着问题、带着疑惑走进课堂。这样,学生才能成为课堂的主人。这样的课堂何乐而不为?
《三角形的面积》教学反思7
“三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深。
1、符合新课改理念,突出了学生的发展,合理设计教学流程
以前的教学只是注重学生的双基训练,不重视知识的生成过程,而这节课的所有设计都围绕学生的思维,学生的分析问题能力,整节课体现学生主动参与、乐于探究、勤于动手,培养了学生获取新知识的能力,分析问题和解决问题的能力,以及交流与合作的能力,教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。
2、努力培养学生的发散思维
开放的探究式学习要不受任何人的约束,要有教师层层深入的引导。这节课设计中,教师注重教材的开放性和思考性,不断鼓励学生去思考,去探索不同的办法,让学生有自主选择的权利和广阔的思维空间,让学生独立思考与小组合作相结合,在相互交流的过程中,自行总结出了三角形的面积公式,学生在操作活动中展现了自我,方法多样且独特,是以往教学所没有的,效果很好。创设引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。
3、构建和谐的新型师生关系
本节课老师赋予了学生很多思考、动手和交流的机会,教师扮演了组织者、引导者和合作者的角色,充分发挥学生的主体作用,较好的体现了教师是学生学习的引导者,引导学生围绕问题的核心进行深度探索、思想碰撞等。从根本上改变了传统的教学模式,使学生达到对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。拓宽了学生在数学教学活动中的空间。
这个案例一定程度上反应了要改变传统的教学方法,要实施新课改,最根本的还是教师角色的转变,转变传统意义上的教师教,学生学,不断形成师生互教互学,彼此形成一个“学习共同体”。为了进一步激发学生的潜能,使他们的讨论和思考更有价值,我们每一位教师都应该不断学习,提高个人素质,以设计出更好的教学环节,让师生共同成长!
《三角形的面积》教学反思8
本节课主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我创设实践操作情境,营造自主探索的学习氛围,激发学生课堂探索的欲望。在教学中我力求突破传统教学的模式,充分体现以“学生发展为本”的教学理念,在获取新知的过程中大胆放手,让学生有足够的时间,以小组为单位对三角形的面积进行探索和交流。小组讨论交流后,我请各小组代表到黑板前进行汇报并说说他们的想法。学生从不同的角度、不同的手段、不同的方法达到一个目的──发现并推导出三角形面积公式。在练习设计中,让学生观察、比较两个三角形的面积是否相等,然后把其中一个三角形的顶点在平行线上移动,使学生清楚地看出,等底等高的三角形形状不同,但是面积都相等。
《三角形的面积》教学反思9
《三角形的面积》是一节传统的教学内容。这部分内容是在学习了长方形面积、平行四边形面积公式的基础上进行教学的。主要是引导学生通过三角形形面积公式的推导去理解和掌握三角形面积计算公式。根据新课程新理念的要求教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
在整个教学过程中,我做到了以下几点:
一、猜测入手,激发学习兴趣
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中鼓励学生大胆猜测:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事半功倍的教学效果。
二、小组结合动手操作
猜测后,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
三、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。如:求绿地面积,求
红领巾面积,求安全警示牌面积,最后又回到求公园绿地面积,每个环节都是在解决生活中的实际问题,使学生学习不但互动有趣,而且富有生活气息。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
这节课也存在一些不足之处,如本节课的基本数学思想应该是转化的数学思想方法,也就是把计算三角形的面积转化为学生已学过的平行四边形的面积来思考,从而推导出三角形面积的计算公式。从教学形式上看,我基本已经作到了,但是,要知道教学目的不仅是教学生学会知识,更重要的是教学生学会学习的方法。因此,本课的总结中我应该点出:这样的思考方法在数学上叫做转化。当我们遇到一个新问题时,就可以动脑筋把它转化成我们以前学过的旧知识。这样就起到了“画龙点睛”的作用,可惜我疏忽了。因此在以后的教学中应注意对学生思维品质的提升,而不单单是知识的传授。
今后我要认真学习新的课程理念,认真钻研教材,研究学生,设计适合学生自身特点的教学方法,以学生为主体,充分调动学生学习的主动性和积极性,从而培养学生的创造能力。努力提高自身的业务能力。
《三角形的面积》教学反思10
今天是教师节,孩子们的心思都乱了,都沉浸在过节的氛围中。早上的第一节,还是按预定的安排完成了《三角形的面积》教学。
我的主要思路先是复习,通过复习了平行四边形的面积公式的推导过程提炼转化思想,在例4的处理上略施技巧,让学生自主构建想要把三角形变成我们学过的平行四边形,只是在为什么必须是两个完全一样的两个三角形,处理还是显得仓促,应该提供素材让孩子动手摆一摆,虽然我们提出两个面积一样的三角形能不能拼成一个平行四边形?有孩子提出面积相等,可能形状不同,此处也结合多媒体,估计基础差的同学可能理解不了。
在操作和填写表格的时候,指导还不充分,有的同学拼出平行四边形但是高不是整格子,不好确定,需要换一个角度来摆。在探讨和推理三角形的面积公式时,同学理解得很清晰,由于我的反复练说,孩子们对于三角形面积公式的理解很透彻,尤其是为什么要除以2有了深层次的理解。
在教学中,注意三角形和平行四边形的关系,这样,在完成练一练的两题就特别顺畅,尤其是一些基础差的孩子也能很快解决出来。
昨天在备《三角形的面积》一课中,《小学数学教师》杂志中就有老师提出,也可以利用“剪拼”和“拼组”两种方式实现三角形到平行四边形的转化,本节课为了想一课时完成,所以我准备再上一课时,引导孩子们用“剪拼”的方式来探讨三角形的面积公式。
《三角形的面积》教学反思11
《数学课程标准》中指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,教师应该让学生在具体的操作活动中进行独立思考,发现问题、提出问题,并与同伴进行交流。
隔壁班的杜老师到我班借班上《三角形面积的计算》以后,我思考着这样一个问题:要不要再上这一节课?如果再上,要怎样上才好?才符合学生现有的认知水平?最后,我决定针对学生在计算时依然容易漏掉"除以2"的现象放手让学生探究,重点体验公式的由来。
这节课的教学目标一是让学生在推导三角形面积公式的活动过程中会用自己的语言表述三角形面积公式的推导过程。除了设定知识目标以外,更重要的是培养学生的能力,所以这节课除了让学生会计算三角形的面积外,还注重培养学生与他人交流、合作、学习的能力。让学生通过与他人的合作交流学会新的知识和本领。最后情感目标方面,让学生感受数学与我们的生活是紧密联系的。
我先让学生自主合作探究三角形的面积计算式,由学生预先准备几对三角形,探究三角形的面积计算公式。学生根据自己的理解,在杜老师的基础上很快地探究得出三角形的面积计算公式,小组中每个学生都是主角,可以发表自己的见解,使学生的个性得到发展。
接下来,我让学生按三角形的三种类别进行交流汇报。学生很快得出结论,无论是哪种三角形,面积的计算公式都是底乘以高除以2。教学到这里,学习任务是否就完成了?学生在前一课时的基础上学习这部分内容很容易,如果上到这里,岂不是原地踏步?这时,我抛出一个新问题:用一个三角形能不能也剪拼成一个平行四边形或长方形?学生体验到前半节课成功的快乐,带着浓厚的的兴趣投入到新的问题研究中。
后来,学生通过操作发现了:新剪拼成的平行四边形的底是原来三角形的一半,高是原来的高,所以,新的平行四边形的面积是三角形的底的一半乘以高,即:S三角形=底÷2高。实验证明了,也可以S三角形=高÷2底。学生可高兴了,他们懂得了利用数字的特点来灵活地计算三角形的面积。对于中差生来说,掌握了这三个数量,至于这三个数放的位置可以灵活排放,计算起来更容易。
放手让学生自行探究三角形的面积公式这一点,我做得非常大胆,体现了新课程中关于让学生自主学习的理念。但我发现在某些方面仍存在“牵着学生鼻子走”,如学生合作和思考的时间不足,教师讲的过多,提示(暗示)得过多;学生练习时间不够,形式比较少等。在实际教学中,发现学生在推导过程中遇到困难。
《三角形的面积》教学反思12
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
知道的学生不多。可能出现的原因有:一是学生没有把预习当成作业;二是学生不知道怎么预习,没完成;三是学生预习时记住了,隔了一夜忘了……原因不同,该如何了解真正的情况,再进行完善?
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一、拼成的平行四边形与原来的三角形面积有什么关系?
二、平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)