《众数和中位数》教案

2021-06-22 教案

  一、教学内容:

  《实验教材·数学》五年级上册第107-109页。

  二、教学目标:

  1、 知识与技能:在现实背景中,理解并体会中位数和众数的意义;会求中位数与众数。

  2、过程与方法:

  (1)体会“平均数”“中位数”和“众数”各自的特点;

  (2)根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。

  3. 情感、态度、价值观:培养学生具体问题具体分析的能力;体会数学服务于生活。

  三、教学重点:

  1、结合情境理解并体会中位数和众数的意义;

  2、对统计量的选择能力。

  四、教学难点:

  1、根据具体问题情境选择适当的统计量表示数据的集中趋势。

  2、根据统计量进行简单的预测或作出决策。

  五、教学过程:

  (一)认识众数:

  小马在网上看到一则招聘广告:

  招聘广告:

  我公司现招聘员工,员工的月平均工资是3000元。(谁来读一读?)

  小马觉得待遇不错,就应聘到了这家公司。一个月后,他拿到了工资但却产生了疑问(投影)什么疑问?他找到主管,质疑招聘广告内容有假,这时,人家给他拿出了这个月员工的工资表,并很自信的告诉他招聘广告内容是真实的。

  小马拿过工资表就赶紧算,算什么?怎么求月平均工资?

  (板书:平均数:总量÷总份数)咱们快帮小马算算吧。

  果真是3000元,看来招聘广告内容不假,小马怎么会对招聘广告真实性有质疑呢?

  招聘广告怎么改才不至于使应聘者产生这样的误会?为什么用1500元?

  在统计学中把这样的数起叫众数(板书:众数)你怎样确定一组数中的`众数呢?一组数据中出现次数最多的那个数。板书:(最多)

  出示老师踢毽照片:

  第一组:

  教师

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

  个数

  9

  9

  8

  6

  2

  9

  7

  4

  9

  第二组

  教师

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

  (10)

  个数

  7

  10

  7

  11

  7

  9

  7

  10

  7

  5

  两组教师踢毽个数的平均数、众数分别是多少?

  在统计学里还经常用到另一个数:中位数。板书:中位数

  位是位置的位,你认为第一组教师踢毽个数的中位数是几?

  个数

  9

  9

  8

  6

  2

  9

  7

  4

  9

  排序:从小到大或从大到小,居中的那个数。

  小组合作找出第一组教师踢毽个数的中位数,用实投汇报。(引导划数法)

  用划数法找到第二组教师踢毽个数的平均数。

  讨论:怎么找?为什么?

  二、练习:

  这是一组教师在规定时间内跳绳个数记录:

  34、40、36、39、40、34、38

  这一共有七个数据,师:、众数是多少?中位数?

  这时发现漏记了一个成绩,加上这个成绩从大到小排列后是:

  40、40、39、38、36、X、34、34

  师:现在这组数据,中位数是?平均数是谁?

  师:那中位数是谁?

  小结:中位数只和一组按大小顺序排列数据的中间位置上数据有关,如果单数个数据就是最中间的那个,要是双数个数据,就是最中间两个数的平均数而平均数与数据中的每一个都息息相关。

  平均数说明的是整体的平均水平;众数说明的是数据中的多数情况;中位数说明的是数据中的中等水平。

  2、综合应用

  1、射击队准备从两名运动员中选一名去参加射击比赛,下面是他们的选拔成绩(单位:环):

  甲:9.1、9.1、9.8、9.0、9.1、9.1

  乙、9.8、9.9、9.8、9.8、3.7、9.8

  给出平均数后问:你认为应选谁去?为什么?

  2、五(3)班准备在两名女生中选一名参加投篮比赛,下面是她们8次投篮的成绩记录(单位:个)

  甲:6、7、5、8、6、6、5、9

  乙:3、7、5、7、4、8、3、7

  平均数 中位数 众数

  甲:6.5 6 6

  乙:5.5 6 7

  3、五(3)班一次数学调研测试的成绩,如下表(单位:分)。

  100

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  94

  94

  93

  92

  91

  91

  91

  90

  88

  88

  87

  85

  85

  85

  84

  83

  80

  75

  70

  63

  仔细观察这次测验成绩,说说发现了什么?

  政府的听证会的目的。

  谈收获。

【《众数和中位数》教案】相关文章:

数学“中位数与众数”教案09-09

《中位数和众数》的教学反思06-14

《中位数和众数》教学反思11-29

《中位数和众数》教学反思08-31

中位数和众数的教学设计及反思07-05

《中位数和众数》数学教学反思06-21

《中位数和众数》练习题02-03

《中位数和众数》的教学反思范文02-23

《中位数和众数》数学教学反思08-09