作为一名人民教师,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编帮大家整理的《有理数的乘方》教案设计,欢迎阅读与收藏。
《有理数的乘方》教案设计1
【回顾思考】
1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。
2、请合上课本,试着回答下列问题:
(1)说说什么是乘方?什么是幂?有什么符号法则?
(2)在做有理数的混合运算时运算顺序怎样?
(3)举例说明什么是科学记数法?
(4)举例说明如何确定一个数的有效数字?
【基础训练】
一、填空:
1、根据乘方的意义,(-3)4=;-34=.
2、的平方等于它本身;的立方等于它本身。
3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。
4、若(a-1)2+︳b+2︳=0,那么a+b=。
5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。
6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)
一、填空:
1、若x20xx=1,则x20xx+2005=。
2、平方等于1/16的数是,立方等于-27的数是,立方后是本身的数有。
3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。
4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。
5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。
6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。
7、3.16×106原数为,精确到位。
8、写出3,-9,27,-81,243,…这行数的第n个数。
二、选择:
1、若规定a⊕b=(a+1)b,则1⊕3的值为()
(A)1(B)3(C)6(D)8
2、(-2)11+(-2)10的.值是()
(A)-2(B)(-2)21(C)0(D)-210
3、下列语句中,正确的个数是()
①任何小于1的有理数都大于它的平方
②没有平方得-9的数
二、选择:
1、下列各组数中,不相等的是()
(A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣
2、(-2)11+(-2)10的值是()
(A)-2(B)(-2)21(C)0(D)-210
3、下列各式中正确的是()
(A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣
4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()
(A)3×106(B)0.3×107(C)3×107(D)0.3×108
5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()
(A)0.1(精确到0.1)(B)0.05(精确到百分位)
(C)0.05(精确到千分位)(D)0.0502(精确到0.0001)
三、计算:
1、8+(-3)2×(-2)
2、100÷(-2)2-(-2)÷(-2/3)
3、(-0.25)20xx×(-4)20xx×(-1)20xx
列方程解应用题的基本关系量:
(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度
(2)工程问题:工作效率×工作时间=工作量
(3)浓度问题:溶液×浓度=溶质
(4)银行利率问题:免税利息=本金×利率×时间
《有理数的乘方》教案设计2
学习目标
知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。
过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。
情感态度价值观:
鼓励猜想,倡导参与,学会倾听,建立自信心。
学习重点:理解有理数乘方的意义和表示,会进行乘方运算。
学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。
学习方法:
探究归纳法
过程设计:
一自主研学
1求n个()的运算叫做乘方,乘方的结果叫做()
2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。
3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。
二合作互学
知识点1:有关乘方的概念
1(--3)4表示的意义是(),,底数是(),指数是(),结果是()
243的底数是()指数是(),表示的意义是(),结果等于()。
知识点2乘方的运算
3计算0.0012=();(--?)=()
知识点3乘方的读法
4(--2)5读作();---25读作()
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的.矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
三自觉练学
1(--3)3=(),--52=()
2立方等于8的数是(),平方等于16的数是()
3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。
4(--3×5)2=();--(--2)4=()
5(--1)20xx=()
6下列说法正确的是()
A一个有理数的平方是非负数。B一个有理数的平方是正数。
C一个有理数的平方大于这个数。D一个有理数的平方大于这个数的相反数。
7把--(--?)(--?)(--?)(--?)写成乘方的形式是()
8下列各对数中,值相等的是()
A--32与--23B--23与(--2)3C--32与(--3)2D(--3)×2与--3×22
9计算下列各题
(1)(--?)3(2)--(--3)3(3)8×(--?)2
(4)(--1)100×(--1)3(5)(--?)3×(--16)
10阅读材料并解决问题
你能比较两个数20112012和20122011的大小吗?
为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。
(1)计算比较
12--------2123-------3234--------4345-------5456---------65
(2)从上面各小题结果归纳,可以猜想什么结论?
(3)根据归纳猜想的结论比较20112012和20122011的大小。
《有理数的乘方》教案设计3
三维目标
一、知识与技能
掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
二、过程与方法
通过例题学习,发展学生观察、归纳、猜想、推理等能力。
三、情感态度与价值观
体验获得成功的`感受、增加学习自信心。
教学重、难点与关键
1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算。
2.难点:灵活应用运算律,使计算简单、准确。
3.关键:明确题目中各个符号的意义,正确运用运算法则。
四、课堂引入
1.我们已经学习了哪几种有理数的运算?
2.有理数的乘方法则是什么?
五、新授
下面的算式里有哪几种运算?
3+5022(-)-1 ①
这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?
有理数的混合运算,应按以下运算顺序进行:
1.先乘方,再乘除,最后加减;
2.同级运算,从左往右进行;
3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如上面①式
3+5022(-)-1
=3+504(-)-1
=3+50(-)-1
=3--1
=-
例3:计算:(1)2(-3)3-4(-3)+15;
(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。
分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。
解:(1)原式=2(-27)-(-12)+15
=-54+12+15
=-27
(2)原式=-8+(-3)(16+2)-9(-2)
=-8+(-3)18-(-4.5)
=-8-54+4.5=-57.5
例4:观察下面三行数:
-2,4,-8,16,-32,64,①
0,6,-6,18,-30,66, ②
-1,2,-4,8,-16,32, ③
(1)第①行数按什么规律排列?
(2)第②、③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。
- 相关推荐
【《有理数的乘方》教案设计】相关文章:
幂的乘方与积的乘方教案设计06-19
有理数的乘方的教学反思07-16
《有理数的乘方》教学设计06-05
有理数的乘方教学设计(精选11篇)10-14
有理数复习的教案设计06-02
《幂的乘方》的教学设计07-02
有理数章节教学总结06-02
有理数的复习教学反思06-28
《有理数的除法》教学设计07-02
有理数的乘法教学设计07-02