教案:多边形内角和与外角和

2024-05-25

  作为一位杰出的教职工,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写才好呢?下面是小编整理的教案:多边形内角和与外角和,仅供参考,希望能够帮助到大家。

  教案:多边形内角和与外角和 1

  一、教学目标

  1、知识目标

  (1)使学生了解多边形的有关概念。

  (2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。

  2、能力目标

  (1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。

  (2)通过变式练习,培养学生动手、动脑的实践能力。

  3、情感与态度目标

  通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,培养学生对学习数学勇于创新的精神。

  二、教材分析

  《多边形的内角和》是七年级下册第7.3章第二节内容,本节内容安排一个课时。为了更好地突出重点、突破难点,圆满地完成教学任务,取得较好的教学效果。根据教材和学生的特点,本节课我采用了“观察、点拨、发现、猜想”等探究式教学方式,在创设问题,新课引入等教学环节中,我提出问题,质疑,引导学生观察,分析、思考等。启发、点拨下发现问题的方法。这种教学方法目的在让学生通过观察、猜想、主动探讨获得新知识,同时培养学生分析、归纳、概括能力,培养学生的创新意识和创造精神。

  三、学校与学生情况分析

  海南省乐东县千家中学是一所少数民族的初级中学,全部都来自于贫困的农村,学校的教学条件比较落后。因此,大部分学生的基础知识以及学习风气都比较差一些。不过这个学期在新教材,新的教学理念指导下,在新的课堂教学方法中,逐步淡化了过分训练,而是重视学生学习兴趣和态度的培养,重视学生的自主探索和合作交流以及创新意识的培养。另外在少数民族地区七年级的学生年龄较大一些。他们在班里开始逐步形成了自己动手实践,自主探索和合作交流的.良好习惯,师生互动的气氛也逐步形成。

  四、教学设计

  (一)创设问题情境,引出新课。

  1、以疑导入,引发求知欲。先展示水立方、蜂窝、六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。

  引题:我们学校要准备建造一个各边长为5米,各内角都相等的六边形花坛。问各角是多少度?

  2、复习提问,知识巩固。

  ⑴三角形内角和等于多少度?(180°)

  问题1、教室中有四边形的物体吗?是怎样的四边形?内角和分别是多少度?问题2:你知道长方形和正方形的内角和是多少?

  其它四边形的内角和是多少?

  问题3、猜一猜:任意一个四边形的内角和可能是多少度?

  生:因为任意三角形的内角和为180,而长方形和正方形的内角和为360,因此可猜想:任意一个四边形的内角和为360。

  ⑵四边形内角和定理以及推导方法。

  3、引入新课

  上一节课学习了求四边形内角和的方法,怎样求五边形、六边形n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。

  (二)引导探索,研讨新知

  1、以动激趣,浅探求知。

  一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。

  二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。(误差)

  三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。

  2、观察联想,启迪思维。

  (1)观察引探:观察比较以上结论后,启发提问:“边数少的多边形可以通过量角来求和,如果边数很多那又怎么办?由上述结论可知,多边形的内角和是三角形内角和的若干倍,那么这个倍数与多边形的边数有何关系?能否找出其规律?”(让学生猜想,大胆尝试)

  (2)启发联想:我们已经学过求四边形内角和的推导方法,它是以三角形为基础求得的,即连结一条对角线,将四边形分割为两个三角形,其和为180°×2,那么五边形、六边形、 n边形能否依此类推呢?

  3、讨论、交流、创新

  教案:多边形内角和与外角和 2

  课题

  探索多边形内角和

  教学目标

  知识目标

  1、探索多边形内角和定义、公式

  2、正多边形定义

  能力目标

  1、发展学生的合情推理意识、主动探索的习惯

  2、发展学生的说理能力和简单的推理意识及能力

  德育目标

  培养用多边形美花生活的意识

  教学重点

  多边形内角和公式的推导

  学难点

  多边形内角和公式的简单运用

  教学方法

  探索、讨论、启发、讲授

  教学手段

  利用学生剪纸、投影仪进行教学

  教学过程:

  一、引入:

  1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

  2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

  二、多边形内角和公式:

  1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

  2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

  (1)量出每个内角度数然后相加为540°;

  (2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);

  (3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°—360°=540°(如图二);

  (4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°—180°=540°(如图三);

  (5)六边形可怎样剪成三角形求内角和?n边形呢?

  (6)总结规律:多边形内角和为(n—2)×180°(n≥3)。

  3、议一议:

  (1)过四边形一个顶点的'对角线把四边形分成两个三角形;

  (2)过五边形一个顶点的对角线把五边形分成( )个三角形;

  (3)过六边形一个顶点的对角线把六边形分成( )个三角形。

  (4)过n边形一个顶点的对角线把n边形分成( )个三角形;

  三、正多边形定义:

  1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

  2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

  3、填表:

  四、小结:

  主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

  五、布置作业:

  课本P110、习题4、10第1、2、3题。

  附:选用随堂练习:

  1、一个多边形的每个内角都是140,它是()边形?

  2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。

  3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。

  4、一个多边形的每个内角都是140°,这个多边形是()边形。

  5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。

  6、下列角能成为一个多边形的内角和的是()

  A、270°B、560°C、1800°D、1900°

  思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

  如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

  教案:多边形内角和与外角和 3

  【教学目标】

  1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.

  2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.

  3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.

  【教学重点与教学难点】

  1.重点:多边形的内角和公式

  2.难点:多边形内角和的推导

  3.关键:.多边形"分割"为三角形.

  【教具准备】

  三角板、卡纸

  【教学过程】

  一、创设情景,揭示问题

  1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

  2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

  你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

  二、探索研究学会新知

  1、回顾旧知,引出问题:

  (1)三角形的内角和等于_________.外角和等于____________

  (2)长方形的内角和等于_____,正方形的内角和等于__________.

  2、探索四边形的内角和:

  (1)学生思考,同学讨论交流.

  (2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。

  (3)引导学生用"分割法"探索四边形的内角和:

  方法一:连接一条对角线,分成2个三角形:

  180°+180°=360°

  从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.

  180°×4-360°=360°

  3、探索多边形内角和的问题,提出阶梯式的`问题:

  你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

  你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

  n边形3456...n分成三角形的个数1234...n-2内角和...

  (1)一个八边形的内角和是_____________度

  (2)一个多边形的内角和是720度,这个多边形是_____边形

  (3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

  通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和

  三、点例透析

  运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

  四、应用训练强化理解

  4、第83页练习1和2多边形内角和定理的应用

  五、知识回放

  课堂小结提问方式:本节课我们学习了什么?

  1多边形内角和公式

  2多边形内角和计算是通过转化为三角形

  六、作业练习

  1、书面作业:

  2、课外练习:

  • 相关推荐

【教案:多边形内角和与外角和】相关文章:

多边形内角和定理证明05-17

《多边形的内角和》教学设计06-19

研讨课教学反思及探索多边形外角和06-06

《多边形的内角和》教学设计范文06-16

《多边形的内角和》的教学设计(精选11篇)04-13

七年级《多边形的内角和》教学设计范文06-17

正多边形和圆教学反思07-16

《三角形的内角和》教案设计06-19

四边形内角和定理的证明06-25

三角形的内角和教学反思07-16