数的整除复习教案设计

2024-08-30

数的整除复习教案设计

  一、教学内容:人教社六年制小学《数学》课本第十册第50—51页。

  二、教学要求:将本单元关于数的整除的概念进行系统整理,使学生进一步理解概念之间的联系和区别;掌握能被2、5、3整除数的特征和分解质因数;掌握求最大公约数、最小公倍数的方法。

  三、教学过程:

  (一)揭示课题

  师:今天我们上“数的整除”单元复习课[板书课题]请同学们回忆本单元所学的知识,积极举手发言。比一比谁平时学得扎实。

  (二)系统整理概念

  1.复习自然数、整数、整除、约数和倍数。

  师:举例说明什么是自然数?最小的自然数是几?有没有最大的自然数?

  生:在数物体的时候,用来表示物体个数的1、2、3、4、5、6 叫做自然数。最小的自然数是1,没有最大的自然数。因为自然数的个数是无限的。

  师:0是什么数?

  生:0是整数。

  师:自然数是整数吗?

  生:0和自然数都是整数。[板书:]

  师:在下面的式子里找出整除的算式,用手势表示算式的编号。

  [出示小黑板]

  (1)36÷12 (2)25÷10 (3)2.4÷0.6

  (4)16÷8 (5)4÷8 (6)3÷0.5

  [全班学生打手势,选出(1)(4)两个算式]

  师:你们判断正确,请说说什么是整除。

  生:数a除以数b(a、b均为整数),除得的商正好是整数而没有余数,就是数a能被数b整除。[板书:整除:a÷b]

  师:请根据上面的整除算式说明什么叫倍数?什么叫约数?

  生:36能被12整除,36就是12的倍数,12就是36的约数。

  师:24的所有约数有哪些?100以内24的所有倍数有哪些?请按从小到大的顺序“接力”回答,一人报一个数。

  生:[一组]24的约数有:1、2、3、4、6、8、12、24。

  生:[另一组]100以内24的倍数有:24、48、72、96。

  师:一个数的约数,最小的是几?最大的是几?

  生:一个数的约数,最小的是1,最大的是它本身。

  师:一个数的倍数,最小的是几?最大的是几?

  生:一个数的倍数,最小的是它本身,没有最大的倍数。

  2.复习能被2、5、3整除的数的特征,奇数、偶数。

  师:口答课本第50页第1题。

  生:18、30、46、102能被2整除:18、27、30、102、147、375能被3整除;30、55、375能被5整除。

  师:你们是怎样看出来的?

  生:根据这些数的特征。[略][板书:能被2、5、3整除的数]

  师:上面这些数中,哪些是奇数?哪些是偶数?

  生:能被2整除的都是偶数,其余的是奇数。

  师:把0、1、2三个数字排列成一个能同时被2、3、5整除的三位数。

  生:120、210。

  师:为什么个位排“0”?怎样知道这个数能同时被2、3、5整除?

  生:因为个位是“0”的数才能同时被2和5整除;这个三位数的十位和百位分别是1和2,它们的和能被3整除;所以这个数能同时被2、3、5整除。

  3.复习质数、合数、质因数、分解质因数。

  师:口答课本第50页第3题,并说明理由。

  生:13、29、43、79是质数,其余的是合数。因为这四个数的约数只有1和它本身。其余的数除了1和它本身还有别的约数。

  师:1是质数还是合数?

  生:1既不是质数也不是合数。

  师:上面这四个质数正好都是奇数,那么奇数都是质数吗?举例说明。

  生:不,奇数里也有合数。例如9、15等。

  师:对!奇数里有质数也有合数。请写出1~20里的奇数、偶数、质数、合数。

  [全班学生写数后指名口答]

  生:1~20里的奇数有:1、3、5、7、9、11、13、15、17、19。

  生:1~20里的偶数有:2、4、6、8、10、12、14、16、18、20。

  生:1~20里的质数有:2、3、5、7、11、13、17、19。

  生:1~20里的合数有:4、6、8、9、10、12、14、15、16、18、20。

  [教师将答案板书在小黑板上,引导学生观察、比较]

  师:从这些数可以看出,奇数和偶数是按能否被2整除来划分的,质数和合数是按约数的个数来划分的,不能混为一谈。

  师:请把课本第50页上第3题中的合数分解质因数。[全班学生练习,教师巡视,指名四人板演]

  26=2×13×151=3×1791=7×13117=3×3×13

  师:“26=2×13×1,2、13和1都是26的质因数。”这种说法对不对?

  生:不对,因为1不是质数。分解质因数要求把一个合数写成几个质数相乘的形式。[板书:—分解质因数]

  4.复习公倍数、公约数、最小公倍数、最大公约数、互质数。

  师:举例说明什么是几个数的公倍数、最小公倍数。

  生:几个数公有的倍数是这几个数的公倍数,其中最小的一个,是这几个数的最小公倍数。例如2的倍数有2、4、6、8、10、12 ,3的倍数有3、6、9、12、15 ,它们的公倍数是6、12 最小公倍数是6。[板书:公倍数—最小公倍数]

  师:举例说明什么是几个数的公约数、最大公约数。

  生:几个数公有的约数是这几个数的公约数,其中最大的一个是这几个数的最大公约数。例如8的约数有1、2、4、8;12的约数有1、2、3、4、6、12。它们的公约数有1、2、4。最大公约数是4。

  [板书:公约数—最大公约数]

  师:什么是互质数?举例说明。

  生:公约数只有1的两个数叫做互质数。例如1和8,3和5。

  师:互质数一定都是质数吗?

  生:不一定。互质数有几种情况:1和一个不是1的自然数,如1和15;两个不相等的质数,如7和3;两个相邻的自然数,如8和9;

  生:还有,一个质数和一个不是它的倍数的合数,如7和25;两个相邻的奇数,如25和27;两个合数,如49和65。

  师:口答课本第51页第8题,并说明理由。

  生:7和14的最大公约数是7,最小公倍数是14。它们是倍数关系。

  生:5和8的最大公约数是1,最小公倍数是40。它们是互质关系。

  生:6和9的最大公约数是3,最小公倍数是18。18是6的3倍,是9的2倍。

  生:2、3和7的最大公约数是1,最小公倍数是42。这三个数两两互质。

  生:4、5和20的最大公约数是1,最小公倍数是20。4和5是互质数,20是三个数的倍数。

  5.小结。

  师:以上复习的这些概念都在自然数范围内,是由“整除”这个概念引出来的一系列概念;通过这个图表(指板书)可以看出这些概念之间的联系和区别。[板书如下]

  (三)巩固练习

  1.填空。

  (1)在1、3/5、0、0.125、378中,( )是自然数,( )是整数。

  (2)在自然数1~20中,既是奇数又是合数的数有();既是偶数又是质数的数有( );( )和( )都是合数,它们是互质数。

  (3)在下面各数的空格里填上一个数字,使它符合所提要求。

  5□,2□0,能被2整除又能被3整除。

  40□,7□□,能被3整除又能被5整除。

  □3□,1□0,能被2、5、3三个数整除。

  2.判断。(对的打“√”,错的打“×”)

  (1)3能被3整除。( )

  (2)互质的两个数一定都是质数。( )

  (3)凡是质数只有两个约数。( )

  (4)所有的偶数都是合数。( )

  3.把下列各数分解质因数。

  45 56 64 80 84 162 210

  4.求下面每一组数的最大公约数和最小公倍数。

  9和12 10和15 32和24

  14和3 12和18 26和78

  [全班学生练习,教师巡视,共同订正]

  (四)总结

  师:“数的整除”这一单元的知识,同学们学得很好。为我们学习后面的新知识打下了较好的基础。从上面的练习中反映出还要注意几个问题(略)。

  • 相关推荐

【数的整除复习教案设计】相关文章:

“数的整除整理复习”教学设计03-19

二年级数学数的整除的意义复习04-25

有理数及其运算复习的教案设计03-19

卤族元素复习教案设计10-26

复习复韵母语文教案设计03-19

《一位数除两位数商是两位数》教案设计(精选10篇)03-15

让心飞翔教案设计01-24

教案设计:破釜沉舟07-19

《天窗》优秀教案设计06-08

《杨氏之子》教案设计02-11