空间微重力模拟育种平台系统的控制器设计论文

时间:2022-09-02 05:32:08 论文 我要投稿
  • 相关推荐

空间微重力模拟育种平台系统的控制器设计论文

  0 引言

空间微重力模拟育种平台系统的控制器设计论文

  近年来,随着航天技术的发展,空间农业已成为农业的一个新趋势。为了实现在地面利用微重力环境(而不是利用微重力效应)进行植物育种试验,弥补回转器作为微重力效应模拟器时所模拟的效果精确度不高、系统稳定性不好等不足之处,研制出更接近太空环境的控制精度高、稳定性好的地面微重力模拟育种平台是非常必要的。这对于耗资巨大、环境条件不好控制的空间育种系统无疑是一个最经济、最有效的手段,可以大大节约成本,提高经济效益。在地面进行微重力模拟育种实验的平台主要由机械和控制两大部分组成。在实际工作中,系统的机械部分实现预定轨迹运动的精度和稳定性与系统所应用的控制方法和控制器的性能密切相关。传统的PID 控制算法是基于对象数学模型的控制算法,尤其适用于可建立精确数学模型的确定性控制系统。但是,实际应用中由于系统参数的变化以及系统存在摩擦力等因素的影响,导致本文所研究的地面模拟空间微重力环境育种系统具有强耦合、强非线性等特点;再加上由于系统本身所具有的机械惯性,使得单独用PID 控制器来调整参数的实验结果不理想。因此,本文提出结合RBF 神经网络的在线学习能力进行PID 参数调整,以此来实现恒张力控制目标,模拟出空间微重力环境,在地面进行微重力育种实验的方法。

  1 空间微重力环境地面模拟育种系统的分析

  1. 1 地面模拟微重力环境育种装置的选择

  太空环境就是微重力环境( 微重力的解释是重力或其它的外力引起的加速度不超过10e - 5 ~ 10e -4ge)。由于空间科学实验投资巨大,技术要求非常高,实验机会有限,使太空农业的发展受到制约。到目前为止,国内的模拟微重力装置多为水平二维回转器,回转器作为微重力效应模拟器时需要注意的问题是:除了在实验过程中要使离心力尽可能地降低之外,还要考虑光( 生物体除了向重性外还有趋光性)、剪切力和粒子碰撞等其他刺激因素的影响。严格地说,回转器实验其只是以一定的旋转速度&“迷惑&”细胞对重力方向的感知,不能完全等同于空间微重力环境下的实验,其模拟的只是微重力的效应,并不能模拟微重力的环境。所以,模拟的效果存在精确度不高、系统稳定性不好等缺点。据了解,黑龙江八一农垦大学农学院在进行太空育种实验时是通过搭载卫星来进行的,每搭载1g 种子就要花费1 800 元,价格非常昂贵,而且实验的机会也非常有限。

  因此,为了实现在地面上模拟空间微重力环境进行育种实验的条件,通过比对几种常用的地面模拟微重力系统的优缺点,最终选用气浮法进行模拟实验,其优点是建造周期短、成本低、精度高,易于实现及维护。通过设计平面止推轴承的大小,能够实现高达几吨的模拟目标实验,且实验时间不受限制;另外,还可以通过更换接口部件实现重复利用,可靠性、鲁棒性调整,以此来实现恒张力控制目标,模拟出空间微重力环境,在地面进行微重力育种实验的方法。

  1 空间微重力环境地面模拟育种系统的分析

  1. 1 地面模拟微重力环境育种装置的选择

  太空环境就是微重力环境( 微重力的解释是重力或其它的外力引起的加速度不超过10e - 5 ~ 10e -4ge)。由于空间科学实验投资巨大,技术要求非常高,实验机会有限,使太空农业的发展受到制约。到目前为止,国内的模拟微重力装置多为水平二维回转器,回转器作为微重力效应模拟器时需要注意的问题是:除了在实验过程中要使离心力尽可能地降低之外,还要考虑光( 生物体除了向重性外还有趋光性)、剪切力和粒子碰撞等其他刺激因素的影响。严格地说,回转器实验其只是以一定的旋转速度&“迷惑&”细胞对重力方向的感知,不能完全等同于空间微重力环境下的实验,其模拟的只是微重力的效应,并不能模拟微重力的环境。所以,模拟的效果存在精确度不高、系统稳定性不好等缺点。据了解,黑龙江八一农垦大学农学院在进行太空育种实验时是通过搭载卫星来进行的,每搭载1g 种子就要花费1 800 元,价格非常昂贵,而且实验的机会也非常有限。

  因此,为了实现在地面上模拟空间微重力环境进行育种实验的条件,通过比对几种常用的地面模拟微重力系统的优缺点,最终选用气浮法进行模拟实验,其优点是建造周期短、成本低、精度高,易于实现及维护。通过设计平面止推轴承的大小,能够实现高达几吨的模拟目标实验,且实验时间不受限制;另外,还可以通过更换接口部件实现重复利用,可靠性、鲁棒性本系统采用&“并联&”的思想,利用半主动式控制方式的优势,将低摩擦气缸和电机滚珠丝杠并联,由被动法(低摩擦气缸)补偿模拟目标大部分重力,同时采用可控的驱动设备( 电机滚珠丝杠机构) 补偿剩余的重力和干扰力。根据恒张力控制目标,在系统的并联机构中,一方面采用直流电机直接控制滚珠丝杠系统的结构,克服了齿轮在运行中所带来的齿隙和摩擦等问题;另一方面在气缸和上模块( 育种平台) 之间加一个压力传感器,将压力传感器所测得的输出偏差值输入到RBF - PID 控制器中,可直接控制直流电机的力矩输出,大大提高系统的控制精度。

  2 基于径向基( RBF) 神经网络PID 控制器的参数整定

  2. 1 模拟系统RBF - PID 控制器结构

  传统的PID 控制器的传递函数中主要有3 个参数,即kp、ki和kd。其中,kp是对系统的响应速度和控制精度进行比例增益的环节,其变化对系统响应的速度和控制精度有直接的影响,其值越大越好,但不能超过一定的范围;ki是决定着系统稳态精度的积分增益环节,其值的变化与系统消除静态误差所需的时间成反比关系;kd是调节系统动态特性( 包括系统的调节时间和系统的抗干扰性等特性) 的微分增益环节,对于系统动态特性的改善有着显著的作用。其传递函数的形式为G(s) = Kp + Ki /s + Kd s其中,PID 控制器设计的关键在于增益的正确选择。所以,从根本上来说,传统的PID 控制器所整定的参数并不是最优的。因此,本文采用的基于RBF 神经网络PID 控制于地面模拟微重力育种系统中,在常规PID 控制的基础上,结合RBF 神经网络对PID 增益进行实时调整,来实现对PID 参数的自动调整。首先,确定RBF 神经网络的输入层结构( 输入节点数目n、隐层数目p、隐节点中心矢量cj 、基宽参数bj及权系数ωj的初值等参数)。然后,采样得到y( k)、r( k) 并计算出PID 控制器的输入变量,初始化PID 控制器的参数和RBF 神经网络的权值;再根据公式计算出RBF 神经网络的输出和系统的实际输出,同时送到RBF 神经网络进行辨识。最后,计算得到PID 控制器的输出u( k) ,一方面将u(k)传递给被控对象进行实时在线的控制后得到系统的实际输出yout;另一方面再将u ( k) 传入到RBF 网络中产生控制对象的输出信息并进行Jacobian的下一步辨识,以此往复循环的方式进行在线学习控制,直到得出最优的系统参数指标。其中,RBF 神经网络在线整定PID 控制系统的结构框图。

  该控制器主要由3 个部分组成:传统的PID 控制器部分采用的是对被控的地面微重力模拟过程直接进行闭环控制的方式,然后在线整定kp、ki和kd这3 个参数;RBF 神经网络的辨识部分是用来在线建立地面微重力模拟育种系统中垂直地面部分气缸的模型,达到方便、快速观测Jacobian 信息的目的;而系统结构中的被控对象部分是为了调整其自身的权系数值,在PID 控制器已经整定完的3 个参数基础之上,再利用RBF 神经网络提供的Jacobian 信息实现对PID 控制器参数的进一步在线调整。其中,被控对象的输出即为PID 控制器的3 个参数,从而达到系统参数的最优指标的目的。

  2. 2 PID 参数的自整定原则

  PID 控制器的3 个输入分别为x(1) = e(k)x(2) = e(k) - e(k - 1)x(3) = e(k) - 2e(k - 1) + e(k - 2)对于PID 控制器,采用增量式算法,则系统的控制误差e 为e(k) = r(k) - y(k)采用梯度下降法计算控制算法的输出为u(k) = u(k - 1) + Δu(k)Δu(k) = kp[e(k) - e(k - 1)]+ kie(k) +kd[e(k) - 2e(k - 1) + e(k - 2)]使误差性能函数值最小的RBF 神经网络PID 参数的整定指标为E(k) = 12e(k)2对kp、ki、kd也采用梯度下降法进行调整得Δ kp = - ηp礒 kp= ηpe(K) 祔Δux(1)Δ ki = - ηi礒 ki= ηie(K) 祔Δux (2)Δ kd = - ηd礒 kd= ηde(K) 祔Δux(3)其中,ηp、ηi、ηd分别为权矢量Δ kp、Δ ki、Δ kd的学习速率,输出的权值采用梯度下降法; 祔Δu代表对象的输出对控制输入的灵敏度,是被控对象Jacobian 的信息。若RBF 神经网络在线学习得到中心隐层节点数为p 个,则祔(k)Δu(k) ≈  yp(k)Δu(k) =Σpj = 1ωj hjcji - Δu(k)b2j其中,cji为隐含层的中心; hj为隐层函数的输出。Jacobian 的信息可通过RBF 神经网络的辨识得到。

  3 MatLab 中仿真实现

  3. 1 参数设置

  为了验证本文所采用的RBF - PID 控制算法在系统实现垂直方向上重力补偿的有效性,利用MatLab 软件中Simulink 模块对系统进行仿真研究。RBF 神经网络的结构为3 - 6 - 1,微重力模拟育种系统的RBF神经网络的3 个输入变量分别为直流控制电机中的电流的变化量Δu(k) 、压力传感器上一时刻的输出偏差量yout( k - 1) 及压力传感器在本时刻的输出偏差量yout(k)。其中,RBF 的隐层结构采用RPCCL 算法学习获得。学习速率ηo = 0 . 31 ,惯性系数αo = 0 . 06、βo = 0. 034。RBF - PID 控制器的参数为:RBF 神经网络权值取[- 1,1]范围内的随机数,采样时间为2s;PID 的3 个参数的初始值kp = 3、ki = 6、kd = 0,其的学习速率初始化后分别为:ηp = 0. 8、ηi = 1. 6、ηd = 1. 2。

  3. 2 仿真结果与分析

  依照上述PID 参数自整定和RBF 神经网络在线学习能力的规则和思想,进行了以下仿真研究。RBF 神经网络PID 控制在阶跃响应整个过程中权矢量Δ kp、Δ ki、Δkd的自适应调整曲线。

  在系统随着气缸上下运动达到在三维空间中模拟微重力育种效果时,PID 的3 个参数可以快速得到调整使系统趋于稳定。为了实现系统的恒张力控制目标,在用RBF -PID 控制器控制电机的力矩输出时,压力传感器的响应输出结果。

  系统的动态响应能力比较快,稳定性能比较好。这主要是由于RBF 神经网络对于系统中所存在的气缸的摩擦力、参数随系统的运行所产生的变化等一些不确定性因素能够快速、准确地进行学习整定,并且能够及时调整PID 控制器的参数,以适应系统的变化。

  本文所研究的三维空间微重力模拟系统中,压力传感器的控制精度和响应速度是系统的重要指标。RBF - PID 控制器可使压力传感器的输出始终保持在± 1N 的波动范围内,即使系统在受到外界突然扰动时,也能在较短时间内进行调整,从而实现了使压力传感器的输出始终等于模拟目标的重力这一恒张力控制策略,达到了模拟三维微重力空间环境的控制目标。以上仿真研究结果表明:文中所使用的RBF 神经网络PID 控制算法对在地面上模拟微重力育种环境所要实现的系统垂直方向上重力补偿的实验效果是有效的。由此说明:该控制器具有稳态精度高、鲁棒性较强及具有良好的自适应性和良好的动态响应性能等特点。

  4 结论

  针对目前广泛使用的回转器模拟微重力效果不好、精度不高的情况,考虑到气浮法的诸多优点,使其应用于三维空间运动的微重力模拟,用以解决二维旋转装置微重力效果不佳的问题,并提出了基于气浮法的微重力模拟育种平台系统。针对此复杂的、非线性系统,利用RBF 网络作为辨识器,采用梯度下降算法对PID 参数进行在线调整,实现系统在垂直地面方向上的重力补偿。同时,通过MatLab / Simulink 模块的仿真结果可以得知:本文所采用的RBF 神经网络自适应PID 在实现Z 向完全重力补偿的控制时是一种强抗干扰的控制器,在PID 参数的调整过程中可使得压力传感器输出始终保持在261. 1 ~ 262N 之间,系统具有较高的控制品质,适用于实时在线控制非线性系统。

【空间微重力模拟育种平台系统的控制器设计论文】相关文章:

赛课网络平台混合式教学在居住空间设计的运用论文06-23

实践教学空间设计论文07-12

FPGA数据采集与回放系统设计论文04-24

基于系统设计的科研管理论文09-22

空间设计课程教学的延伸与探索论文06-23

《住宅空间设计》课程教学探索论文06-23

开放式实验教学网络平台的设计论文07-12

综合布线系统设计项目教学模式应用论文07-12

解析科技竞赛赛务系统的设计与实现论文04-19

《微电子器件》教学中的模拟与设计论文07-12