论文:基于粒子群算法的双子支持向量机研究

时间:2021-06-13 19:52:08 论文 我要投稿

论文:基于粒子群算法的双子支持向量机研究

  摘要:针对标准支持向量机训练时间过长与参数选择无指导性问题,给出一种通过粒子群优化双支持向量机模型参数的方法。与标准支持向量机不同,该方法的时间复杂度更小,特别适合不均衡的数据样本分类问题,对求解大规模的数据分类问题有很大优势。将该算法与标准的支持向量机分类器在不同的文本数据集上进行仿真实验对比,以验证算法的有效性。结果表明基于粒子群优化的双子支持向量机分类器的分类结果高于标准支持向量机分类结果。

论文:基于粒子群算法的双子支持向量机研究

  关键词:双子支持向量机(TWSVM);分类算法;粒子群优化算法(PSO)

  DOIDOI:10.11907/rjdk.151455

  中图分类号:TP312

  基金项目:玉林师范学院校级科研项目(2014YJYB04)

  作者简介作者简介:刘建明(1986-),男,广西博白人,硕士,玉林师范学院数学与信息科学学院助教,研究方向为数据挖掘与机器学习。

  0 引言

  粒子群优化算法[1](Particle Swarm Optimization,PSO)是由美国研究学者Kennedy等人在1995年提出的,PSO算法每一代的种群中的解具有向“他人”学习和“自我”学习的优点,该算法能在较少的迭代次数中找到全局最优解,这一特性被广泛应用于神经网络方法、函数优化问题、数据挖掘、模式识别,工程计算等研究领域。

  双子支持向量机(Twin Support Vector Machines, TWSVM)是Jayadeva[23] 基于传统支持向量机在2007年提出来的。TWSVM是从SVM演化而来的,是一种新型的基于统计学习理论的机器学习算法。TWSVM具有SVM优点,同时适合处理像文本自动分类、基因表达、空间信息遥感数据、语音识别等这样的大规模数据分类问题。

  针对TWSVM对惩罚参数和核函数参数缺乏指导性问题,本文结合PSO算法的优点,给出一种基于PSO的

  算法优化改进策略,对TWSVM分类器进行优化。PSO是一种基于群体智能的全局寻优算法,该算法能在较少的迭代次数中找到全局最优解,通过利用粒子群优化算法对双子支持向量机进行优化后,分类器较之标准支持向量机有更好的分类效果。

  1 PSO算法

  PSO算法步骤:①初始化粒子群,利用随机函数法给每一个粒子的初始位置和速度赋值;②根据第①步的赋值及初始位置与速度更新每一个粒子新的位置;③利用选定的适应度函数计算每一个粒子的适应度值;④对每一个粒子,对比其个体和群体的适应度值,并找出粒子经过的最好位置的适应度值,如果发现更好的位置及适应度值,那么就更新其位置;⑤根据公式更新每个粒子的速度与位置,如果找到最优的'位置或者是到了最大的迭代次数,算法终止,否则转入第3步继续迭代求解。

  2 双子支持向量机(TWSVM)

  与SVM不同,TWSVM求解的是一对分类超平面,SVM求解一个QP问题而TWSVM解决的是两个QP问题,而这两个QP问题的求解规模比SVM小很多。传统SVM构造两个平行的超平面,并且使两个超平面之间的距离最大即最大间隔化,TWSVM虽然也是构造超平面,但超平面之间不需要平行。TWSVM对每一个样本都构造一个超平面,每个样本的超平面要最大限度地靠近该类的样本数据点,而同时尽可能地远离另一类样本数据点。新数据样本将会分配给离两个超平面中最近的一个平面。事实上,该算法还可以沿着非平行面聚集,而且样本聚集方式是根据完全不同的公式聚合而成的。实际上,在TWSVM中的两个QP问题与标准SVM的QP问题除了求解约束问题不同外,求解公式是相同的。TWSVM的二分类算法通过求解下面的一对QPP(Quadratic Program Problem)问题进行二次规划优化[5]。

  3 基于PSO的TWSVM分类算法

  在TWSVM中,与SVM相同,都需要对参数进行确定,TWSVM对每个类均有一个惩罚参数和核函数参数。不同的惩罚参数和核函数参数影响分类的准确率,而PSO算法拥有全局的优化能力,因此,本文将PSO算法引入TWSVM中,解决TWSVM参数的选择问题,PSOTWSVM算法不仅能提高TWSVM的准确率同时又能降低SVM的训练时间,提高训练效率。图2展示了应用PSO算法对TWSVM参数选择的优化流程。

  传统SVM是基于二分类提出的,其复杂度为O(n3),其中n为样本数目[2]。然而在TWSVM二分类算法中,设每类样本数据为n/2,因此,求解两个优化问题时间复杂度为:O(2*(n/2)3),所以在二分类问题中的TWSVM时间复杂度为传统SVM的1/4。推广到多分类问题时,可以发现在时间复杂度方面,TWSVM求解优化问题的时间更少。例如样本类别数为k类,那么该样本的时间复杂度为O(k*(n/k)3)。由于TWSVM分类算法对每类都构造一个超平面,因此该算法在处理不平衡数据时,即一类的样本数目比另一类的样本大得多情况时,TWSVM分别实施不同的惩罚因子,TWSVM克服了传统的SVM处理不均衡样本的局限性,这一点非常适用于大规模的不均衡分类问题。 4 算法仿真实验

  为验证基于PSO的TWSVM分类算法的有效性,本文利用该算法构建一个文本分类器,运用不同数据集在该分类器上进行实验并与标准支持向量机构建的分类器进行对比仿真实验。

  4.1 分类器性能评价

  常用的分类器评价方法包括:准确率和召回率。这两个指标广泛应用于文本分类系统的评价标准。准确率(Precision)是指全部分类文本中划分的类别与实际类别相同的文本数量占全部文本的比率。召回率(Recall)是指分类正确的文本数占应有文档数的比率。文本分类输出结果见表1。

  4.2 实验结果分析

  由表2可知,PSOTWSVM的分类性能比TWSVM要好。因此,基于PSO的TWSVM是一个有效算法。该算法不但比标准的SVM算法训练时间更短,而且比TWSVM有更好的准确率,PSOTWSVM解决了TWSVM的参数选择问题,提高了TWSVM的泛化性。

  5 结语

  通过基于PSO的TWSVM分类算法与TWSVM算法的分类对比实验可知,应用PSO算法的全局寻优能力提高了TWSVM分类的能力。PSO优化后TWSVM分类器的性能更为优越。基于PSO的TWSVM分类算法比标准的SVM时间复杂度更小,比TWSVM的准确率更高,基于PSO的TWSVM算法在分类问题上较之传统的SVM算法有更大的优越性。

  参考文献:

  [2]JAYADEVA,R KHEMCHANDAN, S CHANDRA.Twin support vector machines for pattern Classification[J]. IEEE Trans. Pattern and Machine Intelligence,2007,29(5):905910.

  [4]谷文成,柴宝仁,腾艳平. 基于粒子群优化算法的支持向量机研究[J].北京理工大学学报,2014, 34(7):705 709.

  [6]王振.基于非平行超平面支持向量机的分类问题研究[D].长春:吉林大学,2014.

  [7]M ARUN KUMAR,M GOPAL. Least squares twin support vector machines for pattern classification[J]. Expert Systems with Applications, 2009,4( 36): 75357543.

【论文:基于粒子群算法的双子支持向量机研究】相关文章:

基于支持向量回归机的复杂产品费用估算技术发展研究论文02-11

基于遗传算法的车牌定位技术研究论文04-16

基于大气散射理论的视频去雾算法的研究论文06-16

向量运算法则09-29

基于单片机温控智能风扇的设计研究论文04-15

计数查找算法研究精选论文04-05

基于遗传算法的优化设计论文04-22

基于AC-BM改进算法的入侵检测技术研究论文04-16

论文:基于遗传算法的电工学组卷程序的研究06-16