- 相关推荐
小学奥数奇数偶数专项练习题及答案
在现实的学习、工作中,我们都要用到练习题,只有多做题,学习成绩才能提上来。学习就是一个反复反复再反复的过程,多做题。大家知道什么样的习题才是好习题吗?下面是小编整理的小学奥数奇数偶数专项练习题及答案,欢迎阅读与收藏。
小学奥数奇数偶数专项练习题及答案1
计算:58×138-80÷15+42×137-70÷15=
考点:四则混合运算中的巧算.
分析:通过观察,运用加法交换律以及减法的性质,原式变为(58×138+42×137)-(80÷15+70÷15),第一个括号内把58×138看作58×(137+1)=58×137+58,再运用乘法分配律计算;第二个括号运用除法的'性质简算,进而解决问题.
解答:解:58×138-80÷15+42×137-70÷15
=(58×138+42×137)-(80÷15+70÷15)
=(42×137+58×137+58)-(80+70)÷15
=(42+58)×137+58-150÷15
=100×137+58-10
=13700+48
=13748.
故答案为:13748.
点评:注意观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算.
小学奥数奇数偶数专项练习题及答案2
1.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
考点:奇偶性问题.
分析:因为李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
解答:
解;他每拿一次,甲盒子中的棋子数就减少一个,
180+181-1=360(次)
所以拿360次后,甲盒里只剩下一个棋子;
李平每次从甲盒子拿出的黑子数都是偶数,
由于181是奇数,奇数减偶数等于奇数,
则甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,
所以甲盒里剩下的'一个棋子应该是黑子.
答:这个棋子是黑色.
点评:完成本题的关健是明确“李平每次从甲盒子拿出的黑子数都是偶数”,然后再据数的奇偶性进行解答就行了.
小学奥数奇数偶数专项练习题及答案3
专题简析:
在日常生活中,我们会遇到下面的问题:有几个杯子,里面的水有多有少,为了使杯中水一样多,就将水多的杯子里的水倒进水少的'杯子里,反复几次,直到几个杯子里的水一样多。这就是我们所讲的“移多补少”,通常称之为平均数问题。
解答平均数应用题关键是要求出总数量和总份数,然后再根据“总数量÷总份数=平均数”这个数量关系式来解答。
例题1
用4个同样的杯了装水,水面的高度分别是8厘米、5厘米、4厘米、3厘米。这4个杯子里水面的平均高度是多少厘米?
思路导航:根据已知条件,先求出4个杯子里水的总厘米数,再用总厘米数除以杯子的个数就可以求出平均每个杯子里水面的高度。
(8+5+4+3)÷3=5厘米
练习一
1,小华期末测试语文、数学、英语、社会分别得了90分、96分、92分、98分,这四门的平均分是多少?
2,某校1——4年级分别有260人、300人、280人、312人,平均每个年级有多少人?
3,甲筐有梨32千克,乙筐有梨38千克,丙、丁筐共有梨50千克,平均每筐多少千克?
例题2
幼儿园小朋友做红花,小华做了7朵,小方做了9朵,小林和小宁合做了12朵。平均每个小朋友做了多少朵?
思路导航:根据已知条件,先求出做花的总朵数,再用花的总朵数除以人数就可求出平均每人做花的朵数。
(7+9+12)÷4=7朵
练习二
1,一个书架上第一层放书52本,第二层和第三层共放70本,第四层放了46本,平均每层放书多少本?
2,某工厂第一、二车间共有工人180人,第三车间有103人,第四车间有81人。平均每个车间多少人?
3,商店有蓝色气球和红色气球共43只,黄气球有20只,绿气球有33只。平均每种气球多少只?
例题3
植树小组植一批树,3天完成。前2天共植113棵,第3天植了55棵。植树小组平均每天植树多少棵?
思路导航:要求植树小组平均每天植树的棵数,必须知道植树的总棵数和植树的天数,植树的总棵数用前2天植的113棵加上第3天植的55棵:113+55=168棵,植树的天数为3天。所以,平均每天植树:168÷3=56棵。
小学奥数奇数偶数专项练习题及答案4
【例题】计算489+487+483+485+484+486+488
【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。
489+487+483+485+484+486+488
=490×7-1-3-7-5-6-4-2
=3430-28
=3402
想一想:如果选480为基准数,可以怎样计算?.
练习题:
1.50+52+53+54+51
2.262+266+270+268+264
3.89+94+92+95+93+94+88+96+87
4.381+378+382+383+379
5.1032+1028+1033+1029+1031+1030
6.2451+2452+2446+2453.
【例题】计算9+99+999+9999
【思路导航】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。
9+99+999+9999
=(10-1)+(100-1)+(1000-1)+(10000-1)
=10+100+1000+10000-4
=11106
练习题:
1.计算99999+9999+999+99+9
2.计算9+98+996+9997
3.计算+2998+396+497
4.计算198+297+396+495
5.计算+2997+4995+5994
6.计算19998+39996+49995+69996
【例题】计算下面各题。
(1)286+879-679
(2)812-593+193
【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的.方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
(1)286+879-679
=286+(879-679)
=286+200
=868
(2)812-593+193
=812-(593-193)
=812-400
=412
练习题:
计算下面各题。
1.368+1859-8592.582+393-293
3.632-385+285
4.2756-2748+1748+244
5.612-375+275+(388+286)
6.756+1478+346-(256+278)-246
【例题】计算下面各题。
(1)632-156-232
(2)128+186+72-86
【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。
(1)632-156-232
=632-232-156
=400-156
=244
(2)128+186+72-86
=128+72+186-86
=(128+72)+(186-86)
=200+100=300
练习题:
计算下面各题
1.1208-569-208
2.283+69-183
3.132-85+68
4.2318+625-1318+375
【例题】计算下面各题。
1.248+(152-127)
2.324-(124-97)
3.283+(358-183)
【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
1.248+(152-127)
=248+152-127
=400-127
=273
2.324-(124-97)
=324-124+97
=200+97
=297
3.283+(358-183)
=283+358-183
=283-183+358
=100+358=458
我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
练习题:
计算下面各题
1.348+(252-166)
2.629+(320-129)
3.462-(262-129)
4.662-(315-238)
5.5623-(623-289)+452-(352-211)
6.736+678+2386-(336+278)-186
小学奥数奇数偶数专项练习题及答案5
例题:计算20xx×-20022002×20xx
分析与解答:这道题如果直接计算,显得比较麻烦。根据题中的数的特点,如果把20012001变形为20xx×10001,把20022002变形为20xx×10001,那么计算起来就非常方便。
20012001×20xx-20022002×20xx
=20xx×10001×20xx-2002×10001×20xx
=0
例题:计算236×37×27
分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的'数。例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27
=236×(37×3×9)
=236×(111×9)
=236×999
=236×(1000-1)
=236000-236
=235764
例题:计算333×334+999×222
分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222
=333×334+333×(3×222)
=333×(334+666)
=333×1000
=333000
小学奥数奇数偶数专项练习题及答案6
在奥数习题中,有种类型的题目不需要复杂的计算过程,也没有繁琐的推理过程。解题的难度在于需要联系生活的实际,需要打破思维的'定势,变换考虑问题的角度。训练的目的在于拓展孩子的思路。
【题目】:
两棵数上共有18只小鸟,5只小鸟从第一棵树上飞到第二棵树上,现在两棵树上共有多少只小鸟?
【解析】:
这道题,如果先假设第一棵树上有若干只小鸟,第二棵树上有若干只小鸟。再算出5只小鸟从第一棵树上飞到第二棵树上后,现在第一棵树上和第二棵树上各有多少只小鸟,最后算出现在两棵树上共有多少只小鸟。很麻烦!
换个角度思考:
这道题中,树上的小鸟虽然有个变化:5只小鸟从第一棵树上飞到第二棵树上。但,5只小鸟从第一棵树上飞到第二棵树上,两棵树上小鸟总数既没有增加又没有减少,所以,两棵数上还是18只小鸟。
【题目】:
小刚去公园玩,公园的门票是6元。卖票的阿姨错把小刚给的10元钱,当成了50元。请问阿姨多找了多少钱?小刚应该还给阿姨多少元?
售票处:门票6元
【解析】:
这道题,如果先算出卖票的阿姨应该找回多少钱,和卖票的阿姨实际找回多少钱,再算出阿姨多找了多少钱,很麻烦。
换个角度思考:
因为卖票的阿姨错把10元钱当成了50元,多算了50-10=40元,所以,阿姨多找了40元钱。小刚应该还给阿姨40元。题中其他条件都是多余条件。
小学奥数奇数偶数专项练习题及答案7
现在的奥数,其难度和深度远远超过了同级的义务教育教学大纲。而相对于这门课程,一般学校的数学课应该称为“普通基础数学”。特此为大家准备了“奥数应用题练习及解析:盈不足问题”。
1.学校园林科有一批树苗,交给若干名学生去栽,一次一次往下分,每次分一棵,最后剩下12棵,不够分了.如果再拿来8棵,那么每个学生正好栽10棵.求参加栽树的学生有多少人,这批树苗共多少棵?
考点:盈亏问题.1923992
分析:最后剩下12棵,不够分了,可知,学生数应大于12,再拿来8棵正好平均分完(每人10棵)由于8<12,所以可知学生数应为:12+8=20(人);又再拿来8棵,那么每个学生正好栽10棵,由此可得树苗应为10×20﹣8=192(棵).
解答:解:人数为:12+8=20(人);
树苗的棵数为:10×20﹣8=192(棵).
答:参加栽树的学生有20人,这批树苗共192棵.
点评:这是一个盈余问题,主要是先根据余下的树苗及需要补进的树苗求出人数是多少就好解答了.
2.小春读一本小说,若每天读35页,则读完全书比规定时间迟一天;若每天读40页,则最后一天要少读5页,如果他每天读39页,最后一天应读多少页才按规定时间读完?
考点:盈亏问题.1923992
分析:因为书的总页数不变,若设规定x天读完,书的页数为35×(x+1)和40x﹣5;据此可列式计算.
解答:解:设规定x天读完,35×(x+1)=40x﹣5,35x+35=40x﹣5,5x=40,x=8;
书的'总页数为:40x﹣5=40×8﹣5=315(页);
最后一天应读:315﹣(8﹣1)×39
=315﹣273
=42(页);
答:最后一天应读42页才按规定时间读完.
点评:此题依据书的页数不变,列方程即可解决.
3.一只青蛙从井底往井口跳,若每天跳3米,则比原定时间迟2天,若每天跳5米,则比原定时间早2天.井口到井底有多少米?
考点:盈亏问题.1923992
分析:两种情况每天跳的米数相差5﹣3=2米,跳的距离相差(3×2+5×2)=16米,进而得出原定时间为:16÷2=8天,进而根据“若每天跳3米,则比原定时间迟2天”,用3×(8+2)计算即可井口到井底的深度.
解答:解:(3×2+5×2)÷(5﹣3),=16÷2,=8(天),(8+2)×3=30(米);
答:井口到井底有30米.
点评:解答此题应根据盈亏问题解法求出原定时间,进而根据题意,进行解答得出结论.
4.王师傅加工一批零件,若每天加工250个,则比原定计划迟2天;若平均每天加工300个零件,正好按原定时间完成.求这批零件的总个数?
考点:盈亏问题.1923992
分析:由题意得:若每天加工250个,则比原定计划迟2天,即还有250×2=500个零件没有做;每天多做(300﹣250)=50个,正好按原定时间完成,则原定计划用500÷50=10天;进而根据“工效×工作时间=工作总量”进行解答即可.
解答:解:(250×2)÷(300﹣250)=10(天),10×300=3000(个);
或250×(10+2)=3000(个);
答:求这批零件共有3000个.
点评:解答此题应认真分析题中的数量间的关系,进而根据工作总量、工作效率和工作时间的关系进行解答即可.
小学奥数奇数偶数专项练习题及答案8
甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
考点:奇偶性问题.
分析:因为李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
解答:解;他每拿一次,甲盒子中的'棋子数就减少一个,180+181-1=360(次)
所以拿360次后,甲盒里只剩下一个棋子;
李平每次从甲盒子拿出的黑子数都是偶数,由于181是奇数,奇数减偶数等于奇数,则甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
答:这个棋子是黑色.
点评:完成本题的关健是明确“李平每次从甲盒子拿出的黑子数都是偶数”,然后再据数的奇偶性进行解答就行了.
小学奥数奇数偶数专项练习题及答案9
1、在合适的地方填写“+”或“-”,使等式成立。
123456=1
2、小红做题太粗心,减法当成加法题,25错看成52,算出的.结果是130,正确的结果是多少?
解析:
第一题:
分析1:把六个数分组,试加会发现1+2+3+5=11,4+6=10,这样在4、6前面填上“-”,其他地方填上“+”,等式成立。
分析2:1+2+3+4+5+6=2121-1=÷2=10减去10就可以了,所以在4.6前面填上“-”
答案:1+2+3-4+5-6=1
第二题:
分析:根据条件,列出正确的算式及错误的算式。
正确:(78)-25=53
错误:(78)+52=130
【小学奥数奇数偶数专项练习题及答案】相关文章:
小学奥数练习题07-28
奥数经典练习题05-28
经典的奥数练习题05-29
经典的初中奥数练习题05-30
初中奥数经典的练习题05-29
(精选)初中奥数经典的练习题07-25
小升初奥数试题及答案06-08
经典奥数题及答案解析10-14
六年级奥数专项练习及答案02-28
六年级奥数练习题及答案06-28