《与函数》课件设计

时间:2021-06-11 16:10:53 课件 我要投稿

《集合与函数》课件设计

  一、教材分析

《集合与函数》课件设计

  集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.

  函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容, 是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.

  二、学情分析

  1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.

  2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.

  3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的'关键.

  三、设计思路

  本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.

  四、教学目标分析

  (一)知识与技能

  1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.

  A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.

  2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.

  A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.

  (二)过程与方法

  1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.

  2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.

  (三)情感态度与价值观

  在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.

  五、重难点分析

  重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.

  难点:含参问题的讨论,函数性质之间的关系.

  六.知识梳理(约10分钟)

  提出问题

  问题1:把本章的知识结构用框图形式表示出来.

  问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合具体实例说明集合的这些基本要求吗?

  问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算,交、并、补.

  问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?

  请结合具体实例分析,表示函数的三种方法,每一种方法的特点.

  问题5:分析研究函数的方向,它们之间的联系.

  在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.

  .

【《与函数》课件设计】相关文章:

《对数函数》课件设计05-08

初中函数课件03-19

函数教学课件03-31

一次函数的教学设计课件02-17

对数函数课件03-19

指数函数课件03-19

高一函数的课件02-21

高一函数课件02-21

二次函数课件03-19