- 相关推荐
质数和合数教学设计
作为一名为他人授业解惑的教育工作者,通常会被要求编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么问题来了,教学设计应该怎么写?下面是小编整理的质数和合数教学设计,希望对大家有所帮助。
质数和合数教学设计1
教学目标:
1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:
质数和合数的意义。
教学难点:
正确判断一个常见数是质数还是合数。
教学时间:
一课时
教学过程:
一、复习旧知,设疑激趣。
师:在刚开始学习倍数和因数时,我们就知道要研究的数是非零的自然数。如果以是不是2的倍数这个标准进行分类,自然数可以分为几类?
师:请手中的数是偶数的同学站起来,坐着的同学就是什么数?
师:自然数除了按奇偶数进行分类外。我们还可以按自然数的因数个数的多少来进行分类,大家想不想试一试?
二、新授。
1、学习质数和合数的概念。
(1)先让学生找出手中数的所有因数。
(2)出示例题
师:老师先选出几个数,让有这几个数的同学说出这些数的因数。
提问:如果把这6个数按因数个数的多少分成两类,你打算怎样分类?
讨论:哪种分类方法更能突出每类数在因数方面的共同特点?
2、小结:为了突出每一类数在因数方面的特点,我们就把这六个数分为两类:一类是只有两个因数的,另一类是超过两个因数的。
3、揭示定义:请大家仔细观察只有两个因数的数,这两个因数有什么特点?(一个是1,一个是它本身)。自然数中是不是只有这3个数只有两个因数呢?像这样的数,我们给它起个名字叫做质数,也叫做素数。(板书:质数)
剩下这几个数因数的个数是怎样的?和质数的因数有什么不同?(除了1和它本身外还有别的.因数)。除了这3个数,看看你们手中的数还有没有这样超过两个因数的数?像这样的数,我们也给它起个名字叫做合数。(板书:合数)
4、揭示课题:这就是今天这节课要学习的内容。
5、分别请手中的数是质数和合数的同学站起来,问:你们有没有观察到,有一个同学两次都没有站起来,知道她手中拿的是什么数吗?这个1有几个因数?它是质数还是合数?
6、这样看来,非零自然数如果按因数的个数分类,你认为应该分成几类?哪几类?
三、教学“试一试”
1、先让学生自己独立完成,然后指名对应数字的同学起来说出答案,并说明理由。
2、提问:你们认为怎样判断一个数是不是质数或者合数?
四、练习:
1、做“练一练”题。
2、做练习六的第1题。
先让学生自己完成,然后齐读剩下的质数。
3、做练习六的第2题。
五、拓展延伸
1、把迷路的数送回家。(练习六第2题)
2、判断
①所有的质数都是奇数。
②所有的偶数都是合数。
③自然数不是质数就是合数。
④两个奇数相减,差一定是偶数。
⑤两个偶数相加,和一定是合数。
六、课后小结。
学习了关于质数和合数,你们还想研究哪些问题?还有哪些不懂的问题?
七、 板书设计:
质数和合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
不是质数,也不是合数
质数和合数教学设计2
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
学生独立思考,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的.长方形?
学生各自独立思考,想像后举手回答。
3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
学生几乎是异口同声地说:会越多。
师:确定吗?(引导学生展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。
先让学生小组讨论,然后全班交流,师根据学生的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
学生独立思考后,在小组内进行交流,然后再全班交流。
引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)
6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们认为“1”是什么数?
让学生独立思考,后展开讨论。
二、动手操作,制质数表。
1、师出示:73。让学生思考着它是不是质数。
师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)
师:这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)
2、让学生动手制作质数表。
3、集体交流方法。
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
质数和合数教学设计3
设计说明
1、引导学生主动探索,促进学生自主学习。
自主学习能力可以说是学生学会求知、学会学习的核心。在学生找20以内各数的因数时,放手让学生自己想办法在最短的时间内找出各数的因数,并在教师的引导下按因数的个数给各数分类,最终得出质数和合数的概念,让学生成为探索家。
2、设计有梯度的练习题,促进学生差异发展。
“因材施教”是教学工作的重要原则,“因材而练”,就是要让不同的学生做不同的练习,真正实现《数学课程标准》中提出的“不同的人在数学上得到不同的发展”目标。因此,本课时在习题的设计上呈现了多样性的原则,让学有余力的学生可以只选择难度较大的习题,学习困难的学生也可以避开那些啃不动的难题,选择基础题和经过努力可以完成的习题。实行同一起点,不同的人达到不同的终点,这样既保护了学生的自信心和自尊心,又调动了学生的主动性和积极性,促进了学生的差异发展。
课前准备
教师准备PPT课件教学过程
教学过程
⊙创设情境,生成问题
同学们,老师在屏幕上出示了自然数1~20,如果把这些数分类,可以怎样分呢?(可以分为奇数和偶数)还可以怎样分呢?这节课我们就来共同探究新的知识。
⊙探索交流,解决问题
1、提问:找出1~20各数的因数。
2、分组讨论。
3、汇报讨论结果。
教师根据学生的汇报板书:
1的因数:1。
2的因数:1,2。
3的因数:1,3。
4的因数:1,2,4。
5的因数:1,5。
6的因数:1,2,3,6。
7的`因数:1,7。
8的因数:1,2,4,8。
……
4、提问:你能按照上面各数的因数的个数给这些数分类吗?
有1个因数的数:1。
有2个因数的数:2,3,5,7,11,13,17,19。
有2个以上因数的数:4,6,8,9,10,12,14,15,16,18,20。
(学生可能还会分成有3个、4个、5个、6个因数的,教师可以说明,把有3个、4个、5个、6个因数的数归为一类,统一叫做有2个以上因数的数)
质数和合数教学设计4
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重点】:理解质数和合数的意义
【教学难点】:判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
【教具学具准备】:学生每人准备一张学号牌、课件
【教学过程】:
一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……
二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流)板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的'呢?
(3)1既不是质数也不是合数
(4)分类:所以按照因数个数的多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
质数和合数教学设计5
一、课前谈话:
师:同学们好,首先自我介绍一下,我姓侯,你们可以叫我什么呢?现在我们要在这里共同上一节数学课,我很想和大家成为朋友。作为朋友,我应该知道每个同学的名字。可是我又不能一下子把全班同学的名字全记住。于是,我想了一个好办法,那就是暂时先用学号来代替名字,这个办法可以吗?
学生回答(好)。
师:从左边起第一位同学为1号,向右依次为2号、3号…下面请同学们把自己的学号报一下,我对数字很感兴趣,看谁能让我先记住。
学生依次报学号。
师:我也是这个集体中的一员了,我就是x号了。
二、复习导入:
师:现在呀我想向同学们重新介绍我自己。我是x号,x是奇数,能被3整除。你们想不想像老师一样介绍一下你自己?谁来介绍?
学生回答,(强调:其它学生要认真倾听,看他们说得对不对。)根据回答中学生报的质数进行提问:它能被谁整除?板书,引导:还有哪位同学的学号也是这种情况,只能被1和这个数本身整除?(学生回答,教师相应板书10个左右质数)
师:谁的学号除了能被1和这个数本身整除以外,还能被别的数整除?(学生回答,教师相应板书10个左右合数)
三、探索新知
1、总结概念
师:那么这两组数都是什么数呢?请同学们看数学书59页的内容,看谁是一个会学习的孩子!
学生看书。
师:好了,我看了同学们看书很认真,那么通过看书你知道了这些数是什么数吗?(指着第一组数)
学生回答质数的概念。(如果不完整,引导:书上是怎么告诉我们的?)
师:同学们回答得很准确,像这样只有1和它本身两个约数,这样的数叫质数(又叫素数)。(教师相应画上椭圆,出示课题:质数。并贴出质数的概念。)
师:那通过看书你知道这些数又是什么数呢?(指着第二组数)
学生回答合数概念。
师:同学们回答得真完整。像这样如果除了1和它本身还有别的约数,这样的数叫做合数。(教师相应画上椭圆,出示课题:合数。并贴出合数的概念。)
师:这就是这节课我们要研究的内容。(手指课题)
下面我们把这两个概念齐读一下。
学生齐读。
师:现在我再向大家介绍一下我自己!我是39号,39除了1和它本身两个约数以外,还有别的约数,所以39是合数。你们也想这样向同学们介绍一下你自己吗?其他同学要认真听!听听他们介绍得对不对。(4、5个同学介绍)还有同学想介绍,那就请同桌两人互相介绍介绍吧!
2、游戏促学:
师:好了,我们大家的学习兴致可真高!下面我们来做个游戏,学号是1——20的.同学请注意,学号是质数的同学请起立,按从小到大的顺序报一下自己的学号。学号是最小的质数的学生请说一句话!
师:学号是合数的同学请起立,按从小到大的顺序报一下自己的学号。最小的合数请说一句话!
师:1——20号的同学,谁一次也没有站起来?你为什么不站呢?
学生回答。
说明:是的,1只有一个约数,所以它既不是质数,也不是合数。
3、认识质数表
师:判断一个数究竟是质数还是合数,除了根据概念去判断以外,还可以查看质数表。(出示100以内质数表)
师:这是一张100以内的质数表,在这里出现有是100以内的什么数?(质数)没有出现的呢?(合数和1)
师:现在请你将这些质数读一读,然后找出20以内的几个质数,并将它们记住。
学生读背。
师:20以内的质数谁背下来了?
学生回答。
师:你们可真聪明,记得这么快!现在我们又多了一个判断质数的方法,当我们运用概念判断有困难时,别忘了可以借助质数表。
师:刚才我们了解了质数与合数的特征,关于质数和合数方面的知识还有很多,谁愿意把你知道的向同学们介绍一下?(个别的问问从哪查到的)
质数和合数教学设计6
教学内容:
质数和合数(教材第23、24面、25面)
教学目标:
1、使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:
质数和合数的意义。
教学难点:
正确判断一个常见数是质数还是合数。
教学过程:
一、创设情境,激趣导入
1、同学们,听说过“歌德巴赫猜想”吗?这是一个著名的数学难题,被称为“数学王冠上的明珠”。
2、课件显示:任何大于2的偶数都可以写成两个质数的和。
3、这就是著名的“歌德巴赫猜想”。要想解决这个问题,首先就要知道什么是“质数”。你们知道什么样的数是质数吗?引导学生积极思考,并在此基础上导入新课学习。下面,我们来一起观察。
二、反馈预习,探索研究
1、学习质数和合数的概念。
找出1—20各数的因数。看看它们的因数的个数有什么规律。
(1)初步观察:
组织学生一个一个地给这些数找因数并请写出1—20各数的因数。
每个数的因数的个数是否完全相同?
按照每个数的因数的多少,可以分几种情况?
可分为三种情况:(让学生填)
只有一个因数
只有1和它本身两个因数
有两个以上的因数
1
2、3、5、7、11、13、17、19
4、6、8、9、10、12、14、15、16、18、20
(2)观察思考:
只有两个因数的,如:2、3、5、7、11、13、17、19。这几个数的因数有什么特征?
4、6、8、9、10、12、14、15……这些数的因数与上面的数的因数相比有什么不同?
分成小组讨论交流,并汇报讨论结果。教师归纳:
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
注意:1既不是质数,也不是合数。
2、质数、合数的判断方法。
问题:我们应该怎样去判断一个数是质数还是合数?
学生思考,讨论交流并汇报。(根据因数的个数来判断)
(1)完成教材第23面“做一做”。
(课件显示)“做一做”:判断下列各数中哪些是质数,哪些是合数?
17 22 29 35 37 87 93 96
(2)提问:你是怎样判断的?(找出每个数的因数的`个数)
(3)提问:判断是质数还是合数,是不是把所有的因数都找出来呢?(不必要,只要发现这个数除了1和本身以外还有其它的因数,不管有几个,它都是合数)
3、课件显示教材第24面例题1:找出100以内的质数,做一个质数表。
(1)提问:如何很快的制作一张100以内的指数表?
(2)按质数的概念逐个判断?也可以用筛选法。
(3)介绍筛选法:首先排除1,因为1既不是质数,也不是合数。再排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。这样剩下的就是100以内的质数。
课件演示筛选过程,并最终显示:100以内的质数。(略)小结:判断一个数是不是质数,除了用刚才介绍的方法外,还可以查质数表判断,如100以内的质数表。
三、巩固练习:
1、完成教材第25面第2、3两题
2、学生完成后集体讲评。
第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。
同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。
四、课堂总结:
师生共同总结以下内容:
1、什么叫质数?什么叫合数?它们之间最大区别是什么?
2、可以用哪些方法判断质数和合数?
3、你还知道些什么?从中掌握了哪些学习方法?
板书设计
质数和合数
一个数,如果只有1和它本身两个因数,这样的数叫做质数。
一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。
注意:1既不是质数,也不是合数。
作业设计
完成教材第26面(练习四)第4、5两题
【质数和合数教学设计】相关文章:
质数和合数教学设计05-08
《质数和合数》教学设计06-19
质数和合数的教学设计06-01
质数和合数教学设计优秀06-05
质数和合数教学设计3篇02-23
质数和合数教学设计2篇06-11
质数和合数教学设计3篇04-11
质数和合数教学设计4篇02-23
质数与合数的教学反思12-03