平均数的教学设计

时间:2024-07-27 10:29:55 晓丽 教学设计 我要投稿

人教版平均数的教学设计(精选17篇)

  作为一名为他人授业解惑的教育工作者,通常需要用到教学设计来辅助教学,教学设计是把教学原理转化为教学材料和教学活动的计划。那么优秀的教学设计是什么样的呢?下面是小编整理的人教版平均数的教学设计,仅供参考,大家一起来看看吧。

人教版平均数的教学设计(精选17篇)

  平均数的教学设计 1

  教学内容:

  人教版四年级下第90—91页例1、例2及相关内容。

  教学目标:

  1、使学生理解平均数的含义,知道平均数的求法。

  2、了解平均数在统计学上的意义。

  3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

  教学重点:

  理解平均数的意义,掌握平均数的方法。

  教学难点:

  理解平均数的意义。

  教学具准备:

  课件、题卡、磁扣等。

  一、 导入

  同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

  二、 讲授新知

  1、探究平均数的方法

  师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

  师:大家看,他们每人各运了几个球?

  师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

  生:男生成绩好。女生总数12,男生总数15。

  师:对,我们比较总数,可以看出男生队成绩更好。

  师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

  生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

  生:4.

  师:用4表示可以吗?

  生:可以。

  师:男生队用几表示呢?

  生:5.

  师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?

  生:小组合作。

  师:哪个小组愿意派代表汇报一下?(只出示女生的)

  生:女生队2号最多,给1号2个,给3号1个。

  师:结果怎样呢?

  生:让他们变得同样多。

  师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

  师:大家听清楚了吗?谁愿意到黑板上摆一摆?

  生:移多补少演示。

  师:大家同意吗?

  师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。

  师:你们用移多补少的方法表示出男生队的平均成绩吗?

  生:到前面来演示。

  师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

  生:列算式。学生到黑板上演示。

  (4+5+6)÷3

  =15÷3

  =5(个)

  师:你是怎么想的?(写的同学说说自己的想法)

  生:用男生队运球的总数除以3,就是每人平均运5个球。

  师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

  师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

  师:你能用合并平分的方法,求出女生队的平均数吗?

  生:汇报

  师:现在我们来说一说哪一个队成绩更好呢?

  生:男生队

  师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

  2、平均数的作用

  师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

  生:公平,再观察一下,他们为什么不同意。

  不公平,人数不同。

  师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

  生:4.

  师:你们怎么这么快就知道了呢?

  师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

  师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?

  师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

  生:12个。

  师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

  3、平均数的性质

  师:请大家观察女生队的成绩

  我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

  平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

  生:4比7少3个,比2多2个,比3多1个。

  师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

  师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的`数量吗?

  生:不是

  师:平均数5和男生队每个人实际运球数比较一下。

  生:平均数5和2号选手实际运球数一样多。

  师:那么这个5和2号的成绩5表示的意义一样吗?

  生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

  师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

  习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。

  1、请你估一估小强拍球的平均成绩,可能是多少下?

  2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

  师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

  师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

  生汇报:

  师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

  1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

  2:计算统计平均数的作用,在于衡量事物要均等。

  所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

  三、习题

  1、课件出示“小小”冷饮店习题。

  2、水深。

  四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

  板书设计

  平均数

  合并平分 移

  平均数的教学设计 2

  教学内容:

  P92~94

  教学目标:

  1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果使整数)。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

  教学重点:

  理解平均数的意义,学会求简单数据的平均数。

  教学过程:

  一、创设情境,提出问题

  1、谈话:同学们,昨天中午我们代伙的同学在教室里举行了一次套圈比赛,他们每人套10了次,想不想知道他们套中了几个?

  2、指名汇报,回答问题

  陈璇:5个;戴之淳:3个。问:陈璇套得准一些还是戴之淳套得准一些?

  孟子又:3个;陆庭臻4个。问:是这两位女生套得准一些还是这两位男生套得准一些?你是怎么知道的?

  3、谈话:(出示主题图)。看,图上的同学们也在套圈,他们每人套了15个。

  4、指导学生看图,读图(纵、横轴表示的含义;每一格表示的数量)

  5、问:你能从图上看出每人套中了多少个吗?(根据学生回答在图中标出数量,并根据回答要求学生说说自己是怎么看出数量的多少的)。

  6、问:除了能从图中看每人套中的个数外,你还看出了什么?

  二、自主探索,解决问题

  1、问:你能不能从图中一眼看出是男生套得准一些还是女生套得准一些呢?

  2、指名汇报,说明理由。

  3、说明:有道理。他们两队的人数不同,所以我们不能一个人一个人地比较,只有分别求出“男生平均每人套多少个”和“女生平均每人套多少个”,用这样的数来体现他们套圈成绩的整体水平。

  4、男生套圈成绩的平均数。

  ⑴观察男生成绩统计图,想一想,怎样使他们每人套中的个数相等?(根据学生回答归纳出“移多补少”并板书。)

  ⑵列式计算。理解算式含义。(归纳“先合再分”并板书。)

  ⑶说明:这里的“7”就是男生套圈成绩的平均数。(板书课题)它表示将原先几个大小不等的数,通过移多补少或者先合再分的方法,得到的一个相等的数。

  4、女生套圈成绩的平均数。

  ⑴你会求女生套中的平均数吗?

  ⑵学生尝试练习并指名学生板演。

  ⑶评析:算式每步的含义。

  这里为什么是用女生套中的总数除以5而不是除以4?

  得到的“6”在这里是什么数?表示什么?

  现在你知道是男生套得准一些还是女生套得准一些吗?

  5、观察统计图,男生平均每人套中7个,这里的平均数“7”比哪个数大?比哪个数小?

  再观察女生成绩统计图,平均数“6”是不是也有这样的特点呢?

  6、小结:平均数的大小应该在一组数据中的.最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

  三、巩固练习,拓展应用

  1、P94.2

  出示题目,问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?

  想一想,你能不能估计出这三条丝带的平均长度在()cm——()cm之间?

  学生尝试练习后评讲。

  2、刚才我们一起认识了平均数,也知道如何求平均数,接下来我们要遇到生活中有关平均数的问题。一起来看一看。

  出示下列辨析题。

  ⑴小强身高30厘米,一条小河平均水深100厘米,他下河玩耍肯定安全。

  ⑵在“书香校园”活动中,我校同学平均每人捐书3本。那么,全校每个同学一定都捐了3本书。⑶学校篮球队队员的平均身高是160cm。

  ①李强是学校篮球队队员,他的身高不可能是155m。

  ②学校篮球队中可能有身高超过160cm的队员。

  3、出示本班级第一小组学生身高情况统计表。(如下)

  ⑴老师请一位同学帮着算了一下这个组同学的平均身高,得出的结果是“这个小组同学的平均身高是146m”。不用计算,你能不能知道他算得对不对呢?(后出示正确的计算结果)

  ⑵由此,你能不能猜测一下,三(3)班全班同学的平均身高大约是多少厘米吗?

  ⑶老师也在网上查找了一些资料:我国三年级小学生的平均身高大约是135cm。看到这个数据,结合你自己的身高,你有什么想法?

  四、评价总结

  1、刚才同学们都参与得很热烈,你们觉得田老师这节课上得怎么样?如果请你给这节课打个分,你会打多少分呢?每个小组商量一下得分情况,然后给出一个分数(10分制)。

  问:这么多分数,以谁的分数为准呢?(计算平均分)

  2、学了这节课,你有什么收获?

  平均数的教学设计 3

  教学目标:

  1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重难点:

  理解平均数的意义,学会求简单数据的平均数。

  教学过程:

  一、创设情境,自主探究

  1.呈现套圈情境。

  多媒体演示“套圈比赛”场景。谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?

  2.收集整理数据。

  多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。

  【设计意图:运用多媒体对教材例题进行动态处理,能有效地激发学生的学习兴趣。通过“摆”小方块制作统计图,目的是让学生亲历数据收集整理的过程,同时也为后面用“移多补少”的方法求平均数作准备。】

  3.引入平均数。

  出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)

  【设计意图:富有启发性的“追问’’,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。

  【设计意图:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

  谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。

  观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大?)多媒体闪烁平均数的取值范围。

  提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?可以通过哪些方法来验证?谈话:女生平均每人套中多少个圈呢?你是怎样知道的?先和小组内的同学一起说一说。反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?提问:现在你能判断男生套得准还是女生套得准吗?小结:通过刚才的活动,我们认识了什么?你能结合刚才的例子,说一说平均数表示的意义吗?

  【设计意图:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】

  二、联系实际,拓展应用

  我们一起玩闯关游戏好吗?

  1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。

  (1)想想做做第1题。移动笔筒里的铅笔,看看平均每个笔筒里有多少枝?还可以用其他的方法求出来吗?

  (2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。

  2、挑战第二关“明辨是非”

  (1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()

  (2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

  (3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()

  (4)学校篮球队可能有身高超过160厘米的队员。()

  3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表

  学号1 2 3 4 5

  身高(厘米)132 134 136 140 142

  (1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

  (2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。

  【设计意图:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识,闯关游戏更能激发学生的学习兴趣。】

  三、总结评价,感情升华

  今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?

  教后反思:

  本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。

  具体地说有以下几个特点:

  1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的`程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。

  2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。

  3.较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。

  平均数的教学设计 4

  教学要求:

  1、通过练习,进一步巩固求平均数的方法。

  2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  教学重点:

  解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  教具学具准备:

  课件、统计。

  教学过程:

  一、理解平均数意义

  “1”:说一说题目说的是一件什么事情?

  平均水深140厘米是什么意思?是不是处处水深140厘米?

  (不是,是有的地方比140厘米深,有的地方比140厘米浅)

  “2”:自己看题,同桌讨论。

  全班交流:

  你认为哪些平均数是合理的,哪些是不合理的,为什么?

  (1、3合理,2不合理)

  二、求平均数的练习:

  1、“3、4、6、7”题。

  “3”:从表格里你了解到哪些信息?

  独立解答(1)、(2),全班交流。

  看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?

  “4”:

  (1)先算一算三年级平均每组植树的棵数。

  假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?

  假如是6棵呢?为什么?

  看着这张统计图,你能不能给出平均数的范围?

  (2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?

  “6”:(1)同桌讨论,可以怎么估计?

  介绍自己是怎么估计的。

  (选取6个数据中处于较中间位置的一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)

  (2)你还能说出这个小组同学身高的`哪些情况?

  “7”:独立练习。

  “你还发现什么?”尽量让学生从多角度说一说。

  2、“5、8”题。

  “8”:先说一说这一题的解决过程。

  学生以小组为单位,调查、记录、解答问题。

  “5”:课堂上老师指导说清要求,课后学生完成。

  三、“你知道吗?”

  举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?

  学生计算:(47+78+80+81+82+82)÷6=75

  去掉以后,是多少呢?

  学生计算(78+80+81+82)÷4 约为80分

  看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。

  教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。

  平均数的教学设计 5

  《平均数》是人教版课标版小学数学三年级下册第三单元的内容。我在教学这节课时,刚好看到《小学教学》杂志上刊登了“数学王子”张齐华老师的关于《平均数》一课的课堂实录与报告,我非常兴奋,并尝试运用张老师的思路上了这节课,效果非常好。因此,今天的说课,我就选择了这节内容来和大家交流。

  我直接从教学过程说起,并顺便结合教学中的各个环节来阐述我的教学方法和其蕴含的教学思想,以及所达到的教学目标。

  一、创设情境,初步感知。

  师:你们喜欢打篮球吗?老师很喜欢篮球,这不,昨天下午还与五年级的几个学生玩了一次“1分钟投篮挑战赛”。怎么样,想不想了解现场的比赛情况?

  1、出示李强3次投篮的成绩:5个、5个、5个。

  问:可以用哪个数表示小强一分钟投篮的水平?

  2、出示万林3次投篮的成绩:3个、5个、4个。

  问:可以用哪个数表示小林一分钟的投篮水平?为什么?(在学生回答的基础上,多媒体演示“移多补少”的过程。)

  3、出示王鹏3次投篮的成绩;3个、7个、2个。

  问:可以用哪个数表示王鹏一分钟投篮的水平?还可以怎么求出这个数来?

  4、讨论思考:“4”是3、7、2这三个数的平均数,它能代表王鹏第一次投中的个数吗?能代表第二次的吗?能代表第三次的吗?它究竟代表什么?

  这里,我把李强的成绩设定为3个“5”,让学生很自然地想到用“5”表示小强一分钟的投篮水平,然后让第二个出场的万林设出3个不一样的成绩,制造认识冲突,引发学生想出“移多补少”求平均数的想法,并通过多媒体动画演示,给学生比较直观的表象,强化学生的认知。最后再给出一组不同的数据,巩固“移多补少”求平均数的想法,并追问“还可以怎么想”,逼学生想出求平均数一般方法来,即“先合并再均分”,并板书在黑板上。

  完成板书后,教师适时进行点评总结,告诉学生:“这种通过‘移多补少’或‘先合并再均分’得到的同样多的这个数,就叫做原来几个数的平均数。”并连续几个追问:“4”能代表王鹏第一次、第二次、第三次投中的个数吗?它究竟代表什么?最终,让学生体会到,平均数不能代表其中的每一个数据,它只是表示一组数据的总体水平(板书)。

  至此,在直观演示、板书算式、连续追问,课前设定的知识与技能目标:让学生理解平均数的含义,掌握求平均数的一般方法,已经基本达成。

  二、深化理解,建构新知

  1、三个学生完成比赛后,该老师出场了,我故意卖个关子说:

  正式比赛时,老师要求投4次,他们同意了,下面是我前三次投中的结果。(多媒体展示)4个、6个、5个。猜一猜,老师投了第4个后,结果会怎么样呢?

  2、在学生多次猜测后,老师出示第4次投篮成绩:1个,然后问:

  请估计一下老师最后的平均成绩是几个?你为什么不估计为6个或1个?

  3、试想一下,如果老师最后一次投5个、投9个的话,平均成绩会是多少?可以动手算一算。

  4、多媒体出示3个统计图:问:认真观察,你发现了什么?

  这个环节的设计,旨在让学生明白“每一个数据的变化都会牵动平均数发生变化,但不管怎么变化,平均数总是在最大数和最小数之间(板书)。当然,学生还可能有其它的`发现,那自然美不胜收了?

  三、综合运用、拓展延伸

  “学以致用”是教学的一个重要目标。因此,每学一点新知识,我们都应该安排一些恰当的问题情境,让学生运用学习到的新知识去尝试解决问题,达到“学以致用”目的。我设计的练习以下几项:

  1、三张纸条:7cm、12cm、8cm,老师估计它们的平均长度是10cm,大家认为对吗?

  2、以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米?

  3、《20xx年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁。30年前,也就在张老师出生那会儿,中国男性的平均寿命大约只有68岁。你发现了什么?可有位老爷爷今年70了,他看到这则消息后不但不高兴,还很难过,这是为什么?你怎样来劝劝他?

  4、生活中,哪些地方还用到了平均数?它们各代表什么?

  数学来源于生活,最终还要运用到生活当中去,我设计的这几个问题,旨在让学生学会用数学的眼光去观察、思考、进而解决生活的问题,让学生感受到数学是和我们的生活密切相关的,而且我们学习的数学是生动的,有价值的。

  平均数的教学设计 6

  第一课时

  教学内容:

  教科书第43页例1及相关练习

  教学目标:

  1、体悟“平均数”的实际意义。

  2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。

  3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。

  4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

  教学重点、难点:

  灵活选用求平均数的方法解决实际问题。理解平均数的意义

  教具、学具准备:

  PPT等

  教学流程:

  一、谈话引入、初步感知平均数

  1、学生交流课前收集到的有关平均数的信息。

  2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?

  3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?

  4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。

  二、构建新知

  1、理解含义,探求方法。

  观察棋子,提出问题。(多媒体显示)

  师提问:看着你面前的`棋子,你获得了哪些信息?你还想提出什么数学问题?

  2、感悟“平均数”的实际意义。

  动手操作:以小组为单位研究怎样才能使三排棋子同样多。

  师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?

  这个平均数4与原来每排棋子的个数有什么关系呢?

  3、探索求平均数的不同方法。

  师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!

  ①小组活动讨论。

  ②汇报交流。(生说方法多媒体显示棋子移动过程)

  移多补少! 先假设后均分。先求和再均分。

  三、初步应用,内化拓展。

  师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?

  四、课堂总结

  1、你现在所认识的平均数是什么?

  2、理解平均数是个虚的数。

  五、随堂作业

  平均数的教学设计 7

  教学目标:

  1.使学生掌握平均数的意义和求平均数的方法。

  2.使学生能根据数据列出算式求平均数。

  3.在教学活动中提高学生的发散思维能力。

  教学重、难点:

  1.重点:掌握平均数的意义和求平均数的方法。

  2.难点:能根据数据列出算式求平均数。

  教具、学具准备:练习本、自制统计图、米尺

  教学过程:

  一.谈话导入

  老师准备了8个练习本,想奖给4个上课认真、作业完成得好的同学。(指名学生上台)

  引导问:老师有8个练习本,奖给4个都很听话的同学,应该怎么奖呢?

  8个本子,奖给了4个同学,每人得到了2个,谁能帮老师把这个算式列出来?(指名学生回答,教师板书:8÷4=2)

  在这个算式里8称为什么数?(总数)4称为什么数?(份数)得到的2称为什么数?(每份数,也叫平均数)

  今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。

  揭示课题:平均数

  二.探求新知

  1.导入新课

  同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的'统计图。

  (1)出示统计图。

  (2)观察:从统计图中,你能了解到哪些信息?

  (3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使4个人收集的废瓶子一样多呢?大家来想想办法。

  组织学生交流、讨论,然后指名回答。

  一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。

  二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了4个人,再除以4)

  教师根据学生的回答,并板书:

  (14+12+11+13)÷4

  =52÷4

  =13(个)

  “13”在这里也叫什么数?

  (4)巩固提问:这里为什么要除以4?

  (5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。

  三.巩固提高

  1.活动“数小棒,求平均数”

  早自习,老师分了不同数量的小棒给每位同学,现在大家拿出小棒,四人一组。

  (1)组织学生活动,数一数、算一算,然后求出你们这组平均每人分得多少根小棒。

  (2)指名学生汇报,并说一说你们是怎么求平均数的。教师板书。

  (3)根据学生的完成情况,教师小结。

  2.活动:求平均身高

  在小组内测出每个同学的身高,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均身高。

  四.全堂小结

  今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?

  平均数的教学设计 8

  【教学内容】

  苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

  【教学目标】

  1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

  2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  3.进一步发展学生的`思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

  【教具、学具准备】

  教具:课件、男女生套圈成绩图。

  学具:每四位学生一副男女生套圈成绩学具板。

  【教学过程】

  一、创设情境,激趣导入。

  谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

  二、合作探索,解决问题。

  (一)两队人数相同,每人套中的个数不同。

  屏幕出示第一小组男、女生套圈成绩统计图。提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

  学生回答后教师相机引导并小结。

  (二)两队人数不同,每队中每人套中的个数相同。

  屏幕出示第二小组男、女生套圈情况统计图。请学生一起回答是哪个队套得准一些。提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

  结合媒体演示小结。

  (三)两队人数不同,每人套中的个数也不完全相同。

  1.提出问题,自主探究。

  出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。

  小小组四位同学利用学具板探索解决问题的方法,教师巡视。全班交流比的结果。

  指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。结合电脑演示教师讲解揭示平均数的含义。

  2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?

  指名列式并说说想法。

  3.理解平均数的意义。

  谈话引导学生观察、比较,加深对平均数意义的理解。

  4.小结。

  三、巩固深化,拓展应用

  1.辨一辨、说一说。

  2.移一移、估一估、算一算。

  (1)“想想做做”第1题。

  (2)“想想做做”第2题。

  (三条丝带的长度分别改成6厘米、44厘米、13厘米。)

  3.想一想,选一选。

  平均数的教学设计 9

  教学目标

  1.在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

  3.进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

  教学重点

  理解平均数的意义,学会求简单数据的平均数。

  教学难点

  理解平均数的意义

  教学准备

  多媒体课件,作业纸

  教学过程

  一、谈话导入

  谈话:同学们,你们喜欢玩游戏吗?你们经常玩些什么游戏呢?

  追问:图上的小朋友们再玩什么游戏啊?(套圈游戏)

  二、创设情境,自主探索

  1.呈现套圈情境。

  多媒体演示“套圈比赛”的场景。

  谈话:这是三年级第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈。

  2.引入平均数。

  出示男、女生套圈成绩统计图。

  谈话:老师已经分别把男、女生的套圈成绩制成了统计图。看。

  提问:看了这两张统计图,你知道了什么?

  主要引导学生读出男女生每人的套圈个数。

  提问:根据这两张统计图,你能提出一些什么问题呢?

  谈话:男女生套完圈以后,他们想要知道到底是男生套得准一些还是女生套得准一些,想请我们的同学做小裁判帮帮他们,你们有什么方法去比较呢?先请小组4人交流一下。

  结合学生的想法,相机进行引导。

  想法一:因为吴燕套中的个数最多,所以女生队套得准(比最多)。

  追问:用一个人的成绩代表整个队的成绩,这样合适吗?

  想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

  谈话:那请同学们口算一下男生一共套了多少个?女生呢?

  男生:28个女生:30个

  谈话:如果比总数看起来是女生获胜了,男生对这样的比法有意见吗?为什么?

  追问:这种想法已经注意到从整体的方面去比较,但是这样比公平吗?为什么?(他们两队人数不相等)那可以怎么办呢?

  想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。

  追问:这样比公平吗?(公平)我们就用“求平均每人套中的个数”这种方法试一试。(板书:求平均每人套中的个数)

  想法四:去掉一个女生或者添上一个男生。

  谈话:这样的想法是不错的,可是女生谁也不愿意被去掉,而且男生也没有人了。

  【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  3.理解平均数。

  操作:男生平均每人套中多少个呢?下面请同学们仔细观察男生的统计图,先在小组里讨论用什么方法找出男生的平均成绩,再完成作业纸上的问题1。看哪些小组想的办法又多又好。

  提问:你是怎么找到男生平均每人套中的个数?

  学生可能出现两种方法:一是移多补少;

  让学生讲解移的过程。

  二是先合后分。

  学生说一说怎样用先合后分的方法求平均数,并引导列式:6+9+7+6=28(个),28÷4=7(个)。

  提问:第一步算得是什么?这里的7表示什么意思?

  【说明:将学生对平均数的探求发端于操作和讨论,让学生在活动中获得有关平均数的多种求法。】

  谈话:统计图中的红色线条表示什么?

  根据学生回答,板书课题:这就是我们今天要研究的统计中的平均数。(板书课题:统计—平均数)

  观察:男生套圈的平均数是7,这四个男生套中的个数分别是6个、9个、7个和6个,从图上看你能猜测一下平均数和每人套中的个数相比较,它在哪两个数之间呢?你是怎么想的?

  引导:平均数不可能比最大的数大,也不可能比最小的数小,因此平均数的范围在最小的数和最大的数之间。

  多媒体出示平均数的取值范围。

  提问:根据我们刚才的发现,谁能估一估女生队平均每人套中的个数在什么范围之间?

  谈话:女生平均每人套中多少个圈呢?请你结合作业纸上的第二幅图和问题2,自己动手做一做。

  反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?

  提问:现在你能判断男生套得准还是女生套得准吗?

  小结:通过刚才的活动,我们认识了什么?那你认识了平均数的哪些知识呢?

  小结:平均数的'大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

  【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。】

  三、巩固深化,拓展应用

  1.完成“想想做做”第1题。

  先数一数每个笔筒里笔的枝数,引导学生用两种方法分别求出“平均每个笔筒里有多少枝”铅笔。

  2.想想做做2

  谈话:要求的是这三条丝带的平均长度是多少,那你能估计一下平均长度在什么范围之间呢?

  学生回答后谈话:那请你动手算一算,看看你得到的结果和你估计的结果是否符合。

  3.谈话:生活中有很多事都是和平均数有关的,请看,这是我校篮球队的情况(出示想想做做3)

  平均数的教学设计 10

  一、教学目标:

  1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。

  2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。

  3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

  二、教学重点:

  理解平均数的意义,学会计算简单数据的平均数。

  三教学难点:

  感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

  四、教学过程:

  1、创设情境,体验产生平均数的必要性。

  同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?

  我们一起来看看比赛情况。

  出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)

  A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。

  学生讨论比总数——每队总人数不相同,不公平

  比最多的——个人水平,不是整队水平

  B、到底怎样比才公平地体现两队的实力(投球水平)呢?

  (平均每人投中多少个球)——实际就是每队队员投球的平均数

  揭题板书——认识平均数

  2、认识平均数

  刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?

  A、同桌合作完成

  a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?

  B、反馈:哪队赢了?你是用什么方法研究出来的?

  a、移一移,学生板演,其他生观察:在移的.过程中,什么变了,什么没变?

  每人投球个数变了

  每队的总个数不变

  (每队内部的个数调整,不影响整个队的实力)

  像这种在总个数不变的情况下,把个数多的移给个数少的,使每人投球个数相同的方法叫:移多补少

  刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。

  还有别的方法吗?

  C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)

  (1)、算式中的数都表示什么意思?

  (2)、比较平均数,谁赢了?

  比较两种方法,你喜欢哪一种?为什么?

  小结:当数字比较小又接近的时候我们用移多补少更简便,

  当数字比较大而复杂的时候我们用计算的方法更为简单。

  3、理解平均数的意义

  刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?

  (1)、仔细观察女生队每人的投球数,和平均数相比,你发现了什么?

  有的比5大――可能相等或不相等

  有的比5小――

  (2)、同样都是“5”,它们所表示的意义相同吗?

  是个体的投球水平

  是整个队的总体投球水

  4、其实,我们身边也有许多平均数,你能举个例子吗?

  五、在具体情境中理解、应用平均数

  1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?

  昨天、我从我们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。

  (1)、出示身高计表

  同学12345

  身高cm131136134132137

  (2)、估计:他们的平均身高大约是多少?你是怎么估算的?

  145cm、130cm可以吗?最小数<平均数<最大数

  (3)、算一算他们的平均身高(计算方法)

  平均数134cm和表格中的134cm有什么不同?(5个人的整体的身高状况、3号个人的实际身高)

  (4)、根据第一排同学的身高,请你推测一下我们班同学的平均身高,并说说你的依据是什么?

  (5)、看来推测的结果是否准确和我们选取哪5名同学有很大关系,如果按现在的座位(8排8列),还是选5名同学,你准备怎么选?

  小结:看来平均数的作用真大,它不仅让我们了解了一个小整体的状况,还能根据小整体的状况推测出大整体的状况。

  2、小熊商店

  (1)、出示统计图,你知道了什么?

  (2)、求出前三周的平均数

  (3)、预测一下第四周进几箱?

  六、拓展

  淘气身高1.3米,不会游泳,到平均水深0.8米的小河洗澡,有危险吗?

  七、小结

  这堂课你学得开心吗?有什么收获吗?

  平均数的教学设计 11

  教学内容

  小学数学第六册第92~94页。

  教学目标:

  知识与技能:

  1、从生活实际中体会平均数的意义,建立平均数的概念。

  2、在理解平均数意义的基础上,理解和掌握求平均数的方法。

  3、初步感受求平均数的作用。

  过程与方法:

  联系学生实际,培养学生选择信息、利用信息的能力;培养学数学、用数学的意识及自主探索、合作交流的意识和能力。

  情感态度价值观:

  激发学生主动参与的热情,培养学生主动探究、合作交流的精神。

  教学重点、难点:

  理解平均数的意义;掌握求平均数的方法;体会求平均数的作用。

  教学过程:

  一、创设情境,提出问题

  昨天的作业,张康、朱星宇、施逸婷做得最好。今天老师带来些铅笔想奖给他们。(三人上台领奖,并告诉同学各自得到的铅笔的支数。)板书:张康11支、朱星宇7支、施逸婷6支。

  你们觉得公平吗?怎样才能公平?

  学生讨论,指名汇报。

  (从1张康手中拿2支给施逸婷,再从张康手中拿1支给朱星宇。这样每人都是8支。)

  很好。谁能给这种方法取个名字?(“移多补少法”。)

  (先把三个人的铅笔全合起来有24支,再平均分给这3个人,这样每个人都是8支。

  这种方法也很好!我们也给它取个名字。(“先合再分”)。

  刚才我们用不同的方法,都能使这三个人铅笔的支数相等,都是8。

  教师指出:这里的“8”就是“11、7、6”这三个数的平均数。板书课题:平均数。

  昨天蔡裕杰同学的作业也很有进步,现在我想也奖给他铅笔,怎样才能让他们四个人得到的铅笔支数相等?(学生上台演示,每人得到6支。)

  提问:这里的“6”就是“11、7、6、0”这四个数的什么?

  通过我们刚才的`讨论,你觉得什么是平均数?

  小结:已知几个大小不等的数,在总和不变的条件下,通过把多的移给少的或者先把它们合起来再平均分,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

  二、寻找方法,解决问题

  说到平均数,老师想起前不久学校举行篮球赛的时候,五(2)班女男生之间发生的一次争执。

  为了备战篮球赛,五(2)班男子篮球队和女子篮球队之间先进行了一次投篮比赛。每人投15个球。这是他们投中个数的统计图。出示两幅条形统计图。

  (略)

  这两幅统计图能看得懂吗?从这两幅统计图上你能知道些什么信息?

  投篮比赛结束了,男子篮球队队员说男生投篮准,女子篮球队队员说女生投篮投得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男子篮球队整体水平高一些,还是女子篮球队整体水平高一些?。

  指名汇报,说明理由。

  (有3名男生都投中得比女生少,所以女生投得准一些)

  这是你的意见,有不同的意见吗?

  (女生一共投中28个,男生一共投中30个,男生投得准一些)

  可是男生有5个人,女生只有4个人啊!还有不同的意见吗?

  (去掉一个男生。)

  去谁合理呢?能去吗?

  (应该求出女男生投中个数的平均数,然后再进行比较)

  有道理,他们两个队的人数不同,所以我们不能一个人一个人的比较,分别求出他们投中个数的平均数,用平均数来体现他们投篮命中的整体水平,好办法!掌声鼓励。

  那我们应该怎么求他们的平均数呢?先来求女生投中个数的平均数。

  观察女生投篮成绩统计图,小组讨论,代表汇报。

  (将徐丹多投中的两个分一个给王戈,分一个给赵越,这样,她们每个人都是投中了7个,也就是女生投中个数的平均数是7个。)

  不错,方法很简洁,移多补少法。有不同的方法吗?

  (先求出四个人投中的总个数,再求出平均每人投中的个数。)

  半数:6+9+7+6=28(个)

  28÷4=7(个)

  他用的方法就是——先合再分法。

  看来,大家都非常聪明,男生平均投中的个数会求吗?

  你们觉得这时我们求平均数用哪种方法比较合适?为什么?

  小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。

  学生在练习本上计算,指名板演,集体订正。

  为什么这里求得的总数除以的是5而不是4?

  现在你能帮五(8)班的同学解决他们争论的问题了吗?

  (女生平均每人投中7个,男生平均每人投中6个,所以女生投得更准一些。)

  观察统计图,女生平均每人投中7个,(用直线画出7的水平位置),提问:平均数7比哪个数大,比哪个数小?我们再来看看男生投中的平均数6是不是也有这样的特点?(用直线画出6的水平位置。)

  小结:平均数的大小应该在最大的数和最小的数之间。此外,一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

  三、应用方法,解决问题

  刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,一起来看一看。

  请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。

  挑战第一关:“明辨是非”

  (1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。( )

  (2)城南小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

  (3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。( )

  学校篮球队可能有身高超过160厘米的队员。( )

  (4)四(3)班同学做好事,第一天做好事30件,第二天上午做好事12件,下午做好事15件,四(3)班同学平均每天做好事的件数是(30+12+15)÷3=19(件)。( )

  挑战第二关:“合情推测”

  四(2)班第一小组同学身高情况统计表

  学号 12 3 4 56

  身高(厘米)131 136 138 140 141142

  明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

  平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。

  那么我们应该怎么求他们的平均数呢?

  指名列式,老师告诉答案为138厘米。

  由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?

  你想了解我国四年级同学的平均身高吗?

  出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?

  四、学生看书,质疑问难

  五、全课总结,交流收获

  通过今天这节课的学习,你有什么收获?

  六、布置作业,检查反馈

  平均数的教学设计 12

  预设目标

  1、 通过教学,使学生进一步掌握平均数应用题的基本数量关系,能正确求某一种相关数量的平均数。

  2、 通过实际计算,进一步知道平均数这个统计量在实际生活中的应用,体会到数学的应用价值。

  教学重点

  进一步掌握平均数应用题的基本数量关系。

  教学难点

  学生择优意识的培养。

  教学准备

  课件、卡片、作业纸。

  教学板块

  教与学的预设(师生活动)设计意图

  一、创设情境,引出课题。

  1、 同学们,你们喜欢旅游吗?都去过哪些地方?

  2、 小明的爸爸今年暑假准备带全家参加春秋旅行社组织的鹿鸣山风景一日游。

  安排小明去买票,小明来到旅行社售票处,只见窗口写着:鹿鸣山风景一日游门票价格:甲方案:成人每位120元,小孩每位40元。

  乙方案:团体5人以上每位80元。

  3、 这两种不同的买票方法你理解吗?你是怎么理解的?如果你是小明,准备怎样买票?

  二、 引导探索,优化选择。

  出示例2,引导学生分析两种方案。

  让学生回答问题,引起参与学习的兴趣。

  让学生先尝试发表意见,初步知道选择买票的方法不同和参加旅游的人数有关。

  教学板块教与学的预设(师生活动)设计意图

  三、巩固练习,应用规律。

  四、课堂小结,深化提高。

  (1) 成人7位,小孩3位,怎样购票合算?按甲方案购票平均每位多少元?

  (2) 成人3位,小孩7位,怎样购票合算?按甲方案购票平均每位多少元?

  2、首先,你要明白这两种方案的主要区别是什么?(团体购票与个人购票)

  3、怎样计算甲方案平均每位多少元?

  4、如果按甲方案购票,下列各种组队情况平均每人多少元?请大家独立完成作业纸上的表格一。

  5、怎样比较两种方案?

  6、什么情况下按甲方案买票省钱?(小孩人数多,成人人数少)什么情况下按乙方案买票省钱?(成人人数多,小孩人数少)

  7、除甲乙两种方案以外,还有什么另外的.方案吗?

  完成练习纸作业。

  五、 课堂小结,深化提高。

  1、 这堂课我们学了什么?

  2、 根据给出的优惠措施,买票时一般情况下要考虑哪些因素?(总人数及团体的构成)

  3、 学了这堂课,你有什么体会?小组合作,分开计算,再把不同方案的计算结果集中在一起,交换检查,观察对比,想想各种情况下用哪种方案省钱。

  引导学生得出最合算的方案。

  练一练的题目,先让学生判断各种应采用的方案,再计算。

  平均数的教学设计 13

  教学目标

  知识技能:结合解决问题的过程,使学生理解平均数的含义,初步掌握求平均数的方法,体会平均数的必要性,能根据简单的数据解决一些简单的实际问题。

  过程与方法:在合作探究与交流的过程中体验运用所学知识,理解平均数。

  情感态度:向学生渗透统计思想,使学生感悟到数学知识内在联系的逻辑之美,进而培养好数学的信心。

  教学重点

  明确平均数的意义,掌握求简单平均数的方法。

  教学难点

  通过进一步的操作和思考,运用平均数的相关知识解决问题体会平均数的意义。

  教法学法

  操作法、观察法、自主、合作、探究

  教学准备

  课件,表格。

  教学过程

  一、创设情境,激发兴趣

  游戏导入:同学们看过最强大脑吗?今天这节课,老师想在我们选出属于我们班的最强大脑,你们想挑战吗?

  出示游戏规则:课件出示数字,学生进行活动,保留游戏结果,待最后揭晓答案。

  设计意图:给学生留有神秘猜想的空间,使学生有浓厚的接受新知的兴趣。

  二、探究交流,解决问题

  (一)认识平均数

  淘气记住几个数字?

  1、引导思考:平均每次记住6个数字是怎么得来的?

  2、学生合作交流,反馈

  A、移多补少

  B、总数÷个数=平均数

  3、引出:平均数是一组数据平均水平的代表。“6”是匀出来的。

  (二)生活中的平均数。

  1、学生举例说

  2、计算平均数,思考极端数对平均数的影响。

  小红语文99分,数学100分,英语95分,平均分多少分?再加一门科学46分,均分会有什么变化?

  思考:平均分在什么范围内?大约是多少?并计算平均分。

  同桌合作交流,全班汇报。

  小结:极端数据会影响平均数的'结果。

  设计意图:通过学生熟悉不过的考试分数例子,来内化极端数字对平均数的影响。这样理解起来更容易。

  (三)联系实际,拓展应用

  根据平均数知识,解释现象。

  每小组选做一题,小组合作交流思想,全班汇报。

  1、评委打分;

  2、争做小法官

  3、猜年龄

  师:揭晓答案:38岁、9岁、8岁、11岁、8岁、12岁、8岁、9岁、8岁、9岁

  设计意图:让学生体会平均数是一组数据的平均水平的体现,但每一个数字都会影响平均数。

  4、计算自己记数水平,评选本班最强大脑。

  (四)课堂小结

  谈谈这节课你的收获。

  板书设计

  平均数

  移多补少

  总数÷个数=平均数

  《平均数》 教案这篇文章共2848字。

  平均数的教学设计 14

  第一步:课堂引入

  设计的几个问题如下:

  (1)、请同学读P140探究问题,依据统计表可以读出哪些信息

  (2)、这里的组中值指什么,它是怎样确定的?

  (3)、第二组数据的频数5指什么呢?

  (4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

  第二步:应用举例:

  例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:

  载客量/人组中值频数(班次)

  1≤x<21113

  21≤x<41315

  41≤x<615120

  61≤x<817122

  81≤x<1019118

  101≤x<12111115

  这天5路公共汽车平均每班的载客量是多少?

  分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的权是它的频3,由此这天5路公共汽车平均每班的载客量是:

  思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?

  分析:

  由表格可知,81≤x<101的18个班次和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的.百分比为33/83等于39.8%

  活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如键),计算器便会求出平均数的值。

  例2:下表是校女子排球队队员的年龄分布:

  年龄13141516

  频数1452

  求校女子排球队队员的平均年龄(可使用计算器)。

  答:校女子排球队队员的平均年龄为14.7岁

  平均数的教学设计 15

  教学目标:

  1.知道平均数的含义和求法。

  2.加强学生对平均数在统计学上意义的理解。

  3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

  教师重点和难点:

  理解平均数的含义,掌握求平均数的方法。

  教具/学具准备:

  多媒体、长方形。

  一、创设情境、激趣导入

  1.谈话引入:(出示幻灯教师家的书架)

  师:这是老师家的书架,我们一起来看看。现在我的书架上上层有8本书,下层有4本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。你有什么办法?

  2.感知

  (1)学生思考,想象移的过程。

  生:把上层书架上的8本书 ,拿2本放在下层书架上,现在每层书架上的书就一样多了。

  (2)教师操作并问:现在每层都有几本书了?(6本)

  (3)师:像这样把多的移给少的,解决问题的方法,我们给它起个名字叫:移多补少。

  (4)师:你还有什么方法?

  生:把上层书架上的书和下层书架上的书先合起来,再平均放在两层书架上,这样每层书架上的书就一样多了。

  师:像这种把几个不同的数先合并起来,再平均分成这样的几份的到相同的数,解决问题的方法我们也给它起个名字叫:先合后分。

  (5)师:现在每层书架上的书一样多了吗?

  生:一样多了。

  师:都是几本?(6本)

  师:它是我们通过什么方法得到的数?(或者:谁来说一说我们可以通过什么方法来得到这个数?)

  生:用的是移多补少和先合后分的方法。

  师:像这样得到的数,它也有自己的名字—平均数。

  师:所以6就是8和4的平均数。谁再来说说6是谁和谁的平均数?(生说)

  (6)师:今天,我们就来认识一下“平均数”这个新朋友,好吗? (板书:平均数)

  二、合作探究,深化理解

  1、师:老师又新增添了一层书架,第三层书架上有几本书了?

  生:第三层书架上有3本书了

  师:用我们刚才解决问题的方法,你能求出这三层书架上书的本数的平均数吗?

  师:请拿出学具,来摆一摆,注意摆时要一一对应。

  摆完把你的想法讲给你的同伴听一听。(学生活动,教师巡视。)

  师:谁来说一说,你的方法。

  学生汇报:

  生:从8本书里拿出1个放在第二层4本书里,再从第一层拿出2本书放在第三层书里,这样他们每层就一样多了。

  师:现在每层有几本书了?

  生:现在每层有5本书了。

  师:5就是8、4、3的`什么数?

  生:5就是8、4、3的平均数。

  师:还有其他方法吗?

  生:先把三层书合起来,在平均分成3层。

  师:你能有算式表示表示出来吗?

  生:(8+4+3)÷3=5(本)(师板书)

  师:8+4+3表示什么?为什么要除以3?5表示什么?

  (1) 找2-3人来汇报。

  (2) 把这个算是各部分表示什么?同伴之间互相说一说。

  2、师:下面我们来解决一个生活中的小问题。(出示统计图)

  (1)师:仔细观察这幅统计图,你获得了那些数学信息?

  生:小红收集了47个矿泉水瓶。小兰收集了33个矿泉水瓶。小亮收集了25个矿泉水瓶。小红收集了35个矿泉水瓶。

  师:根据数学信息,你能提出一个跟我们今天学习有关的数学问题吗?

  生:这一小队平均每人收集了多少个矿泉水瓶?

  师:怎样求出这一小队平均每人收集了多少个矿泉水瓶?

  师:你先独立思考一下,把自己的想法和同伴交流交流,再把自己的想法用算式表示出来。

  学生活动,教师巡视。

  组织汇报:

  生:(47+33+25+35)÷4

  =(80+60)÷4

  =140÷4

  =35(个)

  答:这一小队平均每人收集了35个矿泉水瓶。

  师:观察这个算式,哪部分体现了合?哪部分体现了分?哪个数是平均数?

  生:47+33+25+35体现了合, ÷4体现了分, 35是平均数。

  师:35是哪些数的平均数?

  生:35是47、33、25、35平均数。

  师:有用移多补少的方法的吗?

  师:你们怎么不用这种方法呢?

  生:数太大不好操作。

  师:好,老师把这种方法放到了上了,我们一起来看一下吧。(放,学生体验一本一本的移比较麻烦)。

  师小结:看起来,真像同学们说的一样,用“移多补少”的方法解决这个问题真是不方便。我们以后在遇到问题时,一定要根据不同问题选择合适的方法来解答。

  (2)师:老师把平均数也放到了统计图中,请你用这个平均数与这四位同学实际的收集的矿泉水瓶个数比一比,你发现了什么?(看情况,让学生小组交流)

  生:小红收集的个数比平均数多;小兰和小亮收集的个数比平均数少;小明收集的个数与平均数同样多。

  师:它是每个人实际收集到的矿泉水瓶吗?

  生:不是。

  师:它只是反应了这组数据的总体情况。

  三、应用知识,解决问题

  师:看来同学们已经对平均数有了较深的认识,那我要出几道题考考大家。

  1、判断并说明理由

  学校篮球队队员的平均身高是160厘米。

  (1)李强是学校篮球队队员,他身高155厘米,可能吗?(生判断。)说说你的理由。

  师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一道题。

  (2)学校篮球队可能有身高超过160厘米的队员吗?

  师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数,那么。

  生:那就一定有人身高不到平均数。

  师:没错。看来,平均数只反映一组数据的总体水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看小马过河的问题。

  2、有一匹小马要过河,可是河上没有桥,河边有个告示牌:平均水深120厘米,请注意安全!小马想:我的身高是140厘米,比平均水深要高,一定能安全过河。

  师:同学们,你们说小马能安全过河吗?和你的同伴讨论讨论。

  学生们判断并说明理由。

  师:看来小马能否安全过河是不确定的,小马听了你们的分析,一定会谨慎从事的,谢谢同学们。

  3、在一次采摘活动中,小明摘了52个苹果,小刚摘了56个苹果,小红和小兰共摘了84个苹果,他们平均每人摘了多少个苹果?(列 综合算式)

  学生独立解决,集体订正。

  四、小结:通过今天的学习,你有哪些新的收获?

  五、师总结:同学们,刚才我们利用平均数解决了这么多的问题,走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。

  平均数的教学设计 16

  教材分析:

  平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。

  本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。

  学情分析:

  本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。

  教学目标

  1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。

  3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。

  重难点:

  重点:理解平均数的含义,会求平均数。

  难点:平均数的统计意义。教学准备:PPT、教具。

  教学过程:

  一、激情引入

  师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)

  师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)

  师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)

  师:看大家讨论的这么激烈,等今天我们学习了平均数的相关知识,就知道是不是安全的。

  二:学习新知

  师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)

  师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)

  师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)

  师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的',得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。

  师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。

  师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)

  师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)

  师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。

  师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。

  师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。

  师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?

  三、知识运用

  师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?

  (播放踢毽比赛的视频)

  师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?

  生:不公平,人数不同,不应该比较总数,应该比较平均数。

  师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。

  师:那同学生动手计算出男女两队的平均成绩,判出胜负。

  师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)

  师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。

  四、课堂小结

  师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)

  五、作业

  92页做一做第二题

  六、板书

  平均数代表总体水平

  总数÷ 份数=平均数

  (14+12+11+15)÷ 4 =13(个)

  最大的数>平均数>最小的数

  平均数的教学设计 17

  【教学内容】

  北师大版《义务教育教科书数学》四年级(下册)第90页。

  【教学目标】

  (一)知识与技能:

  1、使学生理解“平均数”的含义,初步掌握求平均数的方法,使学生能根据简单的统计表求平均数,培养学生分析问题的能力和操作能力。

  2、结合解决问题的过程初步认识平均数,体会平均数的必要性,并能根据统计图表解决一些简单的实际问题,在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

  (二)过程与方法:

  采用“自主合作,相互交流”的方法更好地理解平均数。在解决实际问题的过程中,进一步积累分析和处理数据的办法,发展统计观念。

  (三)情感态度、价值观:

  向学生渗透事物间联系的思想和统计思想,使学生感悟到数学知识内在联系的逻辑之美,提高学生审美意识。

  【教学重点】

  明确“平均数”的含义;掌握求“平均数”的方法。

  【教学难点】

  感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

  【教学准备】

  多媒体课件

  【教学过程】

  一、创设情境、激情导入

  师:刚才短片中,石正小学让你印象最深刻的是什么?

  生1:美丽的校园。

  生2:是一所有特色的足球学校。

  师:401班的小力、小林、小刚也非常热爱足球。就在上星期,他们三人还约我进行了一场“点球挑战赛”。每轮踢10球,看谁进球多。怎么样,想不想了解现场的比赛情况

  生:(很兴奋地)想啊。

  师:现在就请我们一起看看当时的比赛情况!

  设计谈话导入,一方面拉近了师生间的关系激起了学生的认知兴趣,另一方面也为学生探究活动的开展指明了方向。

  二、合作交流、建立概念

  1、初步感知

  师:首先出场的是小力,他第一轮进了5个球。可是,小力对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再踢两次。如果你是刘老师,你会同意他的要求吗

  生1:我不同意。万一他后面两次踢进的多了,那我不就危险啦!

  生2:我会同意的。做老师的应该大度一点。

  师:呵呵,还真和我想到一块儿去了。不过,小力后两次的成绩很有趣。

  (师出示小力的后两次点球成绩:5个,5个。生会心地笑了)

  师:小力三轮都踢进了5个。现在看来,要表示小力3轮点球进了的个数,用哪个数比较合适

  生:5

  师:为什么?

  生:他每轮都踢进了5个,所有用5来表示他的成绩最合适。

  师:说的有理!小林出场了,三次成绩各不相同。这一回,又该用哪个数来表示小林的成绩比较合适呢(3、4、5)

  能不能通过移一移的办法使到小林三次点球的成绩看起来一样多?

  2、展示交流,理解求平均数的.两种方法

  数学上,像这样从多的里面移一些补给少的,使得每轮个数都一样多。这一过程就叫“移多补少”。移完后,小林每轮看起来都踢进了几个(4个)

  小刚也踢了三轮,成绩又怎样?(3、7、2)

  讨论交流:现在,又该用几来表示他的成绩同学们先独立思考,然后看看除了移动补少的方法外有没有更快、更好的方法来解决?你有什么发现?学有困难的同学也可以自学课本90页。

  像这样先把每轮踢进的个数合起来,然后再平均分给这三轮(板书:合并、平分),能使每一轮看起来一样多吗

  3、引出课题:平均数

  数学上,我们把通过移多补少或计算后得到的每一轮同样多的这个数,就叫做原来这几个数的平均数。(板书:平均数)

  这里的平均数4是表示小刚的最高水平?是最低水平?那表示的是?(板书:平均水平)

  4、理解平均数的意义

  正式比赛前,我主动提出踢四轮的想法。前三轮射门已经结束,怎么样,想不想看看(师呈现前三轮成绩:4个、6个、5个)

  猜猜看,三位同学看到我前三轮的成绩,可能会怎么想

  5、体会平均数的取值范围。

  出示4次成绩(4、6、5、1)凭直觉,刘老师最后的平均数可能是几个

  感知最后的平均成绩应该比最大的数6小,比最小的数1大。

  [生列式计算,并交流计算过程:4+6+5+1=16(个),16÷4=4(个)]

  6、体会平均数的特点——敏感性

  失败乃成功之母,你觉得老师输在哪里?

  试想一下:如果老师最后一轮踢进9个,比赛结果又会如何呢

  看来,要使平均数发生变化,只需要改变其中的几个数

  其实呀,平均数很敏感,善于随着每一个数据的变化而变化,任何一个数据的“风吹草动”都会使它改变,这正是平均数的一个重要特点。

  三、巧设练习,巩固新知

  1、计算平均数

  出示20xx年平远县3月12-18日平均最高气温统计表。

  你能计算这一周的平均最高气温是多少摄氏度吗?平均数是一个知冷暖的“人”。

  2、为了使同学们对平均数有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。

  没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米平均数只反映一组数据的一般水平,并不代表其中的每一个数据。平均数是一个很善变的“人”。

  3、好了,探讨完身高问题,我们再来看看池塘的平均水深。(师出示图)

  平均水深110cm,小明身高140 cm下河游泳不会有危险!您认同吗?

  生:不认同,最深的地方有200 cm,下河游泳还是有危险的。

  师:看来,平均数还是个危险的“人”。

  4、体会极端数据对平均数的影响。

  你们知道在实际的一些比赛中是如何计算平均分的吗?刘老师带来了中央电视台青歌赛的视频请看!

  去掉最高分和最低分的目的是什么?平均数是一个严谨的“人”。

  5、看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。

  20xx年5月14日综合外媒报道,世界卫生组织(who)13日发布了2015年版《世界卫生统计》报告。报告指出,从总体上看,全世界人口的寿命都较以往有所增加。中国在此次报告中的人口平均寿命为:男性74岁,女性77岁。

  一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢

  假如我就是那位73岁的老伯伯,你们打算怎么劝劝我

  平均数是一个会开玩笑的“人”。

  四、畅谈收获、回顾总结

  平均数是一个怎样的“人”?您懂他了吗?

  五、回应课本、课后延伸

  今天我们学习的是课本第90页的内容,请大家翻开书看看内容,有没有不明白的地方?发现重点可以用笔划起来。

  板书设计

  平均数

  平均数是一组数据平均水平的代表

  移多补少

  一样多

  合并平分

  (4+6+5+1)÷4=4(个)

【平均数的教学设计】相关文章:

“平均数”教学设计12-30

《平均数》教学设计04-18

平均数教学设计04-19

平均数教学设计03-09

《平均数》教学设计03-08

《平均数》教学设计06-10

平均数优秀教学设计01-29

【精华】平均数教学设计10-18

平均数教学设计(15篇)06-21