《比的应用》教学设计(精选20篇)
作为一无名无私奉献的教育工作者,就不得不需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写才好呢?下面是小编为大家收集的《比的应用》教学设计,欢迎阅读,希望大家能够喜欢。
《比的应用》教学设计 篇1
教学内容:
义务教育课程标准实验教科书数学六年级下册P49、50“练一练”和练习十一的第3、4、5题
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。
教学重点:
能按给定的比例尺求相应的实际距离或图上距离。
教学难点:
能按给定的比例尺求相应的实际距离或图上距离。
设计理念:
本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。
教学步骤
教师活动学生活动
一、复习旧知
引入新课
1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?
2、什么叫比例尺?求比例尺时要注意哪些问题?
学生练习,找出图上距离与实际距离,再写出比例尺。
二、理解明确
实践运用
1、出示例7,明确题意
找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。
2、分析比例尺1:8000所表示的意义。
引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。
3、尝试列式
根据对1:8000的理解你能尝试列出算式吗?
师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)
4、归纳、选择、
教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。
5、练习
教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
学生分析题意,明确已知比例尺,已知图上距离,求实际距离。
学生分析1:8000表示的意义。
学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。
学生可能出现的方法:
1、5×8000=40000……
2、5×80=400……
3、5/X=1/8000……
图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。
学生列式5/X=1/8000并计算。
三、尝试练习
巩固提高
1、做“试一试”。
先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。
2、做“练一练”先独立解题,在组织交流
3、做练习十一第4题
引导学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。
引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
学生练习
在图中表示医院的位置。
学生练习后交流
四、全课总结
回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?
2、你还有什么疑问,或你能给同学提出什么新问题?
五、知识拓展
激发兴趣P51“你知道吗?”
1、收集地图资料,展示给学生观看。
2、介绍国家基本比例尺地图。
学生观看
阅读后适当交流
《比的应用》教学设计 篇2
教学目标:
1. 帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。
2. 学生能够理解稍复杂的分数乘法应用题的解题思路,提高分析、推理等思维能力。
3. 经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。
教学重点:
理解分数应用题的数量关系,会用两种方法灵活解答。
教学过程:
一. 巧设铺垫,激趣导入
1. 创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)
2. 设疑:小记者请求大家来帮助他如何理解、掌握应用题?
3. 小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)
[设计意图:对于六年级学生来说,应用题是感到既头疼又枯燥的知识,课一开始,创设一个学生喜闻乐见的故事情景,为新知的引出拉开了一个良好的序幕,使枯燥的数学内容生活花、趣味化。通过巧妙设疑,既复习了以往所学分数应用题的关键所在,又为今天所要学的新知作了铺垫,可谓是“一石数鸟”。该环节切实做到了在情景中习旧,激活了学生原有的认知结构。]
4. 小记者示题:说出下面各题的单位“1”及数量关系。
(1)一些奖状,发了3/5
(2)已经看了全书的1/8
(3)男生占全班人数的3/7
(学生自由口述,选择喜欢的题目解答)
引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)
5. 示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)
[设计意图:突出“从学生已有的生活经验出发每让学生亲身经理将实际问题抽象成数学模型并进行解释与应用的过程”,有效突破了教学重点,其找一找、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲望。生活中处处有数学,引用生活中的素材,制造认知冲突,不知不觉中激发了学生探索新知的欲望,让学生进入了自主探究的积极状态。既尊重了学生的已有知识储备,又为新知的构建架设桥梁。]
二. 探索交流,建构新知。
(一)自由构建新知。
1. 设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)
2. 编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)
[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。
(二)探讨交流新知。
1. 交流展示成果:选一些小组向全班交流
根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。
例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)
示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)
2. 交流:“还剩几张”你是怎么想的?
学生介绍方法:
(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的
15—15×3/5
=15—9
=6(张)
(2)画线段图帮助理解。
分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)
15×(1—3/5)
=15×2/5
=6(张)
整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。
3. 小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)
那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。
[设计意图:不再将黑板视为教师神圣的领地,把黑板的权利回归学生。黑板上的每个解题过程后面渡藏着那个经典的解题思路、方法,学生的交流无不是将已经获得的主观影象投射在所写的算式、线段图中,萝卜青菜各有所爱,学生的求异心态无时无刻不让其他学生处于活跃的互动之中。这一环节,通过让学生自己尝试解题并说出解题意图,将自己所学的知识融入到方法中,让学生的个性发挥得淋漓尽致,数学课堂充满生命活力,学生对学习重难点的理解得意进一步的升华。通过小组展示比赛,促进学生的积极的情感和态度,知识的形成过程在比赛展示中形成,学生比较感兴趣。]
(三)灵活运用新知。
1. 小记者发言:谢谢同学们,通过刚才的参与讨论,然后听了大家介绍的好方法,体会到了解答应用题的乐趣。领略了你们班同学的风采,收益非浅,表示感谢!(拿出“智慧奖、创意奖”等奖状感谢刚刚表现突出的学生。)设疑:还剩下的问题能帮忙解决吗?
2. 学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)
4. 小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)
4. 创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。
突出强调解答应用题的方法(理清数量关系,理清对应分率)
[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。
三.巩固应用
小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)
[总体设想]:
我设计的“稍复杂的分数应用题”教学设计是为新授部分服务的,具体有以下几个特点:
1. 从生活经验导入新课,使数学问题生活化。
课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。
2. 让学生亲身体验知识的形成和发展。
小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。
3. 注重学习的开放性,学生的自主探究、合作交流。
整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。
《比的应用》教学设计 篇3
一、说教材
1、教材简析
本课时的教学内容主要是硝酸及其应用。本章的核心内容是元素化合物知识,而高中阶段学习的元素化合物主要有:碳及其化合物、硫及其化合物、氮及其化合物,镁、溴、碘等众多的物质。硝酸作为含氮物质在介绍元素化合物知识是必不可少的,且硝酸是中学化学中的三大强酸之一,掌握硝酸的性质及其应用是必要的。本节的教学在了解硝酸的氧化性的基础上让学生了解浓、稀硝酸与其他物质发生氧化还原反应时生成物不一样。
2、教学目标
(一)、知识教学目标:使学生掌握硝酸的物理和化学性质,了解随着硝酸浓度的变化硝酸与其他物质反应生成物也发生变化。
(二)、能力目标:培养学生通过观察实验,记录实验现象,分析实验,得出结论的能力,同时增强学生的环保意识。根据所学的氧化剂和还原剂的知识来了解硝酸的氧化性,掌握硝酸与其他物质反应的化学方程式。
(三)、情感目标:激发学生学习化学的兴趣,培养学生严肃认真、实事求是的实验习惯和科学态度,对学生进行辩证法教育,增强环保意识和创新意识。
3、教学的重点、难点:
硝酸的不稳定性、强氧化性是本节课的重点;
硝酸的强氧化性是本节课的难点。
二、说学情和教法
学生在前面的学习中,知道了硝酸是常见的氧化剂,而且具备了一定的观察分析实验的能力。因此通过引导学生从硝酸的应用入手探讨硝酸的性质。根据教材内容和教学目标,运用化学研究的方法论为指导,采用提出问题——实验——观察分析——研究讨论——结论——应用的边讲边实验的实验探索方法进行施教,主要侧重于实验探索、对比分析、归纳概括。
三、说学法
化学是一门以实验为基础的科学,学生通过直观生动的实验来学习,才能留下深刻的印象,也具有说服力。教学时,应该注意及时引导学生对实验现象进行分析。同时利用一些富于启发性的思考问题,活跃学生思维,增强分析问题的能力。引导学生及时进行总结,寻找知识间的相互联系,掌握科学有效的记忆方法,提高记忆的效果。
四、说教学过程
(一)引入新课
简明扼要地从解释谚语雷雨发庄稼的道理引入。
(二)硝酸的性质:包括硝酸的物理性质和化学性质
1、硝酸的物理性质
让学生根据实验提纲进行实验操作,简单描述实验现象,培养学生的观察能力和表达能力。
2、硝酸的化学性质:重点学习硝酸的不稳定性和强氧化性。
《比的应用》教学设计 篇4
教学内容
课本第143页例2;练一练第1~6题。
教材分析
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。
学情分析
本班学生计算能力还可以,就是对应用题有一种害怕心理。
教学目标
1、进一步掌握圆面积公式,并能正确地计算圆面积。
2、能运用圆面积计算公式,正确地解决一些简单的实际问题。
教学重点
会熟练运用公式求圆面积。
教学难点
求出需要的条件,即圆的半径。
教学准备
作业纸、课件。
教学过程
一、复习。
课件出示:
(一)求下列各题中圆的半径。
(1)C=6.28分米,r=?;(2)d=30厘米,r=?
(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?
(二)、求下列各圆的面积。
(1)r=2分米,S=?(2)d=6米,S=?
(3)r=10厘米,S=?(4)d=3分米,S=?
只要求学生进行口头表述计算公式(不求计算结果)
二、学生活动:
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
三、汇报交流
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
四、巩固练习
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
R=d÷2
R=c÷π÷2
S=πr
《比的应用》教学设计 篇5
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
二、教学重点、难点
1、教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2、教学难点:根据数与数字关系找等量关系。
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)列方程解应用问题的步骤?
①审题,
②设未知数,
③列方程,
④解方程,
⑤答。
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数)。
2、例1两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,
(2)设元(几种设法)。设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)
设较小奇数为x,另一个为x+2,据题意,得x(x+2)=323。
整理后,得x2+2x-323=0。
解这个方程,得x1=17,x2=-19。
由x=17得x+2=19,由x=-19得x+2=-17,答:这两个奇数是17,19或者-19,-17。
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1。
据题意,得(x-1)(x+1)=323。
整理后,得x2=324。
解这个方程,得x1=18,x2=-18。
当x=18时,18-1=17,18+1=19。
当x=-18时,-18-1=-19,-18+1=-17。
答:两个奇数分别为17,19;或者-19,-17。
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1。
据题意,得(2x-1)(2x+1)=323。
整理后,得4x2=324。
解得,2x=18,或2x=-18。
当2x=18时,2x-1=18-1=17;2x+1=18+1=19。
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1、三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2、解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3、选出三种方法中最简单的一种。
练习
1、两个连续整数的积是210,求这两个数。
2、三个连续奇数的和是321,求这三个数。
3、已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数=十位数字×10+个位数字。
三位数=百位数字×100+十位数字×10+个位数字。
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x。
据题意,得10(x-2)+x=3x(x-2),整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24。
答:这个两位数是24。
练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)
2、一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
教师引导,启发,学生笔答,板书,评价,体会。
(四)总结,扩展
1、奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。
数与数字的关系
两位数=(十位数字×10)+个位数字。
三位数=(百位数字×100)+(十位数字×10)+个位数字。
……
2、通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。
四、布置作业
教材P.42中A1、2、
《比的应用》教学设计 篇6
教材分析:
本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、 谈话激趣,复习辅垫
1. 师生交流
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)
对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?
师:老师查到了一些资料,我们一起来看一下。(课件出示)
2.复习旧知
师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答
师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?
生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量
35× 5 (4 )=28(千克)
师:谁还能根据另一个信息写出等量关系式?
成人的体重× 3 (2 )=成人体内的水分的重量
2. 揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、 引导探究,解决问题
1. 课件出示例题。
2. 合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3. 学生汇报
生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)
生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。
28÷ 5 (4 )=35(千克)
4. 比较算法
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)
5. 对比小结
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1) 看作单位“1”的数量相同,数量关系式相同。
(2) 复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知, 可以用方程解答。
(3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、 联系实际,巩固提高
1. (投影)看图口头列式,并用一句话概括题中的等量关系。
(1)
(2)
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?
(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?
3.对比练习
(1)一条路50千米,修了 5 (2 ),修了多少千米?
(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?
(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?
四、全课小结畅谈收获
①今天这节课我们研究了什么问题?
②解答分数除法应用题的关键是什么?
③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。
教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。
设计意图:
一、从生活入手学数学。
《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、 有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
《比的应用》教学设计 篇7
[教材简析]
比的应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
[教学目标]
知识与技能
1、理解按一定比来分配一个数的意义。
2、掌握按比例分配应用题的结构特点及解题方法。
过程与方法
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
情感态度与价值观
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
[教学重点]
掌握解答按比例分配应用题的步骤。
[教学难点]
掌握解题的关键。
[学习方法]
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
[教学时间]
一课时
[教学过程]
一、创设生活情景,谈话引入。
1、创设情景提出问题。
师:各位同学,现在是橘子丰收的季节,大家来看看农场的一些丰收的场面。这些果子老师想把它们送给你们两个班的,怎么分配这些果子呢?
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
( 2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个) 28×3=84(个) 28×2=56(个)
方法二:3+2=5140×3/5=84(个) 140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
2、笑笑帮妈妈洗碗,妈妈拿给笑笑一瓶浓缩液,要求笑笑按这瓶浓缩液上的比1:4加清水稀释成600毫升的稀释液洗碗,你能帮笑笑算出要用多少毫升的浓缩液和清水呢?
3、蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:18:9:8,这样一个7千克的面团需要多少鸡蛋,白糖和面粉呢?
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四、联系生活,介绍比的应用的广泛性。
1、举例
师:今天我们解决了这么多关于比的问题,其实比在生活中有着非常广泛的应用,比如说消毒药水中酒精和水分配,饮料中的各种配料的比……你能举个事例吗?
2、数学书第56页练一练第2题。
3、数学故事:
一个老地主临死时把他的11匹马分给三个儿子,老大继承二分之一,老二继承四分之一,老三继承六分之一,可是三个儿子不知道怎样分,你能帮助他吗?
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五、回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六、作业。
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
板书设计
比的应用
方法一:3+2=5 方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个) 140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
《比的应用》教学反思
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
《比的应用》教学设计 篇8
【教材分析】
《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
【学生分析】
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;
2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
【教具准备】
课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。
课上准备:有关课件、黄、蓝色颜料、量杯等。
【教学重点】 理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
【教学难点】 理解按比分配的实际意义,沟通比与分数之间的联系。
【教学设计】
一、情境导入
情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)
看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)
现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)
【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】
情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)
【策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。】
二、实验操作
1、动手操作,调配绿色
师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)
要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。
(学生动手操作,老师进行指导。)
配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。
【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】
2、观察发现,得出结论
(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)
师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。
学生调配的绿色可能会出现如下情况:
① 所有的小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。
② 有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?
③ 有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?
(2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?
根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。
(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。
师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。
【策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。】
3、再次调配黄色与蓝色的比为3:2的绿色。
(1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?
学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。
【策略说明:主要目的复习旧知,沟通比与分数的关系,为学习新知进行铺垫。】
师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?
(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。
【策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。】
三、动笔计算
1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?
2、学生独立试做,并交流不同的算法。学生可能出现的算法:
方法1:3+2=5 120×3/5=72ml 120×2/5=48ml
师:2/5和3/5各表示什么?说给同桌听一听。
方法2:3+2=5 120÷5×3=72ml 120÷5×2=48ml
师:谁能说说他是怎么想的?
方法3:解:设一份量为xml。
3x+2x=120
5x=120
x=24
3x=24×3=72
2x=24×2=48
方法4:3+2=5 120÷5/2=48ml 120÷5/3=72ml
3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)
4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。
【策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决】
三、小结
像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)
【策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。】
四、巩固应用
1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。
师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“你认为这道题最关键的环节是什么?”
2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)
老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。
咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。
(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)
你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)
【策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。】
四、总结。
1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?
2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。
《比的应用》教学设计 篇9
一、教学内容:
求一个数比另一个数多百分之几的应用题。
二、教学目的:
使学生掌握较复杂的求一个数是另一个数的百分之几的应用题的数量关系和解题规律,能正确地解答求一个数比另一个数多百分之几的应用题。
三、教学重点和难点:
掌握较复杂的求一个数是另一个数的百分之几的应用题的数量关系和解题规律。
四、教学过程:
(一)、复习。
1.说出下面各题以谁作单位1的量。
(1)三好学生占全班同学的百分之几?
(2)台湾岛面积是全国面积的百分之几?
(3)已生产的水泥产量相当于计划产量的百分之几?
2.求一个数是另一个数的百分之几用什么方法?
(二)、新授。
1、出示题目:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?
(1)读题。
(2)怎样理解今年图书册数增加了 这句话?
(3)画出线段图。
(4)写出数量关系式,并列式解答。
(5)、将题目中的 改成12%该怎样解答呢?
(6)、百分数应用题与分数应用题解题思路是一致的。
(7)、学生列式计算,集体订正。
A: 140012%=168(册) 168+1400=1568(册)
B: 1400(1+12%)=1400112%=1568(册)
2、练习。
练习二十二 ,第1题
(三)、小结。
今天我们学的是求一个数比另一个数多百分之几的应用题。
《比的应用》教学设计 篇10
一、教材分析
1.本节教材的地位和作用
这是由本节教学内容在高中化学教学的地位和作用决定的。本章作为从学科内容方面使学生认识化学科学的起始章,是连接初中化学与高中化学的纽带和桥梁,对于发展学生的科学素养,引导学生有效地进行高中阶段的化学学习,具有非常重要的承前启后的作用。 “承前”意味着要复习义务教育阶段化学的重要内容,“启后”意味着要在复习的基础上进一步提高和发展,从而为化学必修课程的学习,乃至整个高中阶段的化学学习奠定重要的基础。因此,本章在全书中占有特殊的地位,具有重要的功能,是整个高中化学的教学重点之一。
对大量繁杂的事物进行合理的分类是一种科学、方便的工作方法,它在学习和研究化学当中有不可替代的作用。本章的一条基本线索就是对化学物质及其变化的分类。在高中化学的第二章编排化学反应与物质分类,使学生对物质的分类、离子反应、氧化还原反应等知识的学习既源于初中又高于初中,既有利于初、高中知识的衔接,又有利于学生能够运用科学过程和科学方法进行化学学习,立意更高些。
2.教学内容
本课题共包含三大内容:分类的含义、分类的方法、分类的应用。
3.教学目标
(1)知识与技能:能根据物质的组成和性质对物质进行分类,同时知道分类的多样性。知道交叉分类法和树状分类法,能根据需要选择并制作分类图。
(2)过程与方法:从日常生活中学生所遇见的一些常见的分类事例入手,采用合作学习的方式,让学生将所学过的化学知识从自己熟悉的角度进行分类,将不同的知识通过某种关系联系起来,从而加深对知识的理解与迁移。通过探究活动,学习与他人合作交流,共同研究、探讨科学问题。
(3)情感态度与价值观:初步建立物质分类的思想,体会掌握科学方法能够有效提高学习效率和效果,体验活动探究的喜悦,感受化学世界的奇妙与和谐,增强学习化学的兴趣,乐于探究物质变化的奥秘。
4.教学重点和难点
【教学重点分析】
能根据物质的组成和性质对物质进行分类,建立分类思想,体会分类方法对于化学科学研究和化学学习的重要作用,体会合作探究学习方式。
【教学难点分析】
本课题没有难点。
5.课时安排
共1课时。
二、学情分析
1.学生起点能力分析
教学对象是刚上高一的学生,处于初高中过渡时期,有一定的生活经验和知识基础。在初中化学的学习中,学生已掌握了一些化学物质和化学反应。初中阶段纯净物、混合物及酸、碱、盐等的学习,其实就是物质分类方法的具体应用,但在思维上,学生正从直觉型经验思维向抽象型思维过渡,学生还没有把分类形成一种方法,形成化学学习的思想。
2.学生“生活概念”的分析
分类法是研究和处理庞大而复杂的现实问题的最常用方法,联系实际面较宽,因此要求学生掌握更多的生活概念。学生在预习时已经按照我的引导查阅了相关知识,有了一定的生活基础。
3.学生“认知方式”分析
学生理解能力基本上没问题,但是处理信息能力及对信息的加工能力、整合知识、运用知识等能力较差,因此在教学中要加强对学生这些能力的培养。
三、教学方法
新课程理念下教师不再教教材而是用教材教,在课堂教学中教师的角色是一个设计者、组织者、指导者,学生处于主动地位,是学习的主角,以获得发展为目的。我采用建构主义理论的指导下的“知识问题化、问题情景化”的教学模式,整个过程中教师适时适量地加以提示,帮助学生在概念的框架下逐渐构建,对知识的综合性、整体性的认识,并将它合理化、理论化,在个体学习的条件下,再进行小组协商、讨论。经过小组成员思维的磋商,在共享集体成果的基础上达到对所学知识比较全面、正确的理解,完成对所学知识的意义建构。所以本节课我采用了活动探究式教学,学生采取小组活动探究形式。
四、学法指导
在教学过程中,教师是主导,而学生是主体,要充分发挥学生的主体作用,教师要教学生怎样去学,使学生自己动手动脑,掌握科学的学习方法。
1.思敢思会思
学生在课堂上要敢于思考,积极配合教师,改变“被动”“灌输式”的学习方式,充体现“学生为主体”的理念。这样,既活跃了思维活动,又使学生体会到思考的必要与快乐。
2.做高效合作
在小组讨论和合作学习的过程中,激发集体荣誉感。通过学生小组实验促进学生之间的合作与竞争,培养学生的探究欲和操作能力。
3.议学会交流
本节教材对理论教学的要求不高,学生应参与讨论,使具有不同思维优势的学生都能够参与到课堂中来,通过表达各自观点来感受成功的喜悦。
4.乐乐于探究
通过实验探究体验科学探究的过程,在探究中学习,充分体现新课程理念,体现教材改革以人为本,以学生的发展为本的思想,从而培养学生终身学习的能力,使课堂真正成为学生的课堂。
五、教学过程设计
教学环节教学活动设计意图
情境创设
展示图书馆、超市图片,图书馆里的图书、超市里的商品成千上万,为什么你能快速找到所需要的图书或商品?创设问题情境,激发学生学习兴趣,引出课题。
探究活动1
其实在我们的日常生活、学习中自觉地不自觉地运用分类法对我们身边的各种物质、用品进行分类。
学生分组活动:
在1分钟内尽可能多地写出你所知道的应用分类法的例子。
讨论分类的意义。思维的发散,让学生意识到分类法在我们的生活中非常普遍存在,明确分类的意义。引出本节课题。
探究活动2学生分组活动:
对下述化合物:
NaCl、HCl、CaCl2、CuO、H2O、Fe2O3分类。
请你说一说你是怎样分类的?在对这些物质分类过程中体会到了什么?
《比的应用》教学设计 篇11
教学目标
1。了解什么是应用题的已知条件和问题,初步理解一步应用题的结构。
2。会联系加减法的含义解答有图有文字的一步计算应用题。
3。培养初步的分析、判断和推理能力。
教学重点
有图有文字应用题的解答。
教学难点
解答有图有文字的减法应用题。
教具学具准备
教师准备教科书第88页例5的两幅图的图画,独立作业的投影片。
学生准备教科书第88页数学游戏的口算卡片和得数卡片。
教学步骤
一、铺垫孕伏。
6+2=9+4=9+9=
9+3=3+5=4+6=
9+7=9+6=9+5=
2+7=9+2=9+8=
统计2分钟以内做完的人数及正确率。指名说一说计算9+3和9+7应该怎样想。
二、探究新知。
1、导入。
(1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟。
师:图中先告诉我们什么?又告诉我们什么?
引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只。
师:求一共是多少只该怎样算呢?
引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9。
教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题。
(2)揭示课题。
像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题。板书课题:应用题。
2、教学例5左边的加法应用题。
(1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?
引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?
教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题。在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的。我们学过的应用题一般都有2个已知条件和1个问题。让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指。
(2)求一共是多少只怎样计算呢?
引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的6只合起来,把3和6合起来是9,列式为3+6=9
(3)让学生把教科书第88页例5左题的算式补充完整。
(4)反馈练习。
完成“做一做”左边的加法题(小兔图)。
先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空。
3、教学例5右边的减法应用题。
(1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状。看图,你知道了什么?怎样计算?
引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6
(2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题。
让学生自由读一读题,找出题中的两个已知条件和1个问题。
引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的。第二个已知条件是,吃了4个梨,是用文字叙述的。问题是:还剩几个?也是用文字叙述的。
师:求还剩几个应该怎样想,怎样列式呢?
引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6
(3)让学生把教科书第88页例5右边的减法应用题的算式补充完整。
(4)反馈练习。
完成“做一做”右边的题(汽车图)。
先让学生找出已知条件和问题,说一说怎样解答,再让学生填书上的空。订正时提问:为什么用减法算?
4、集体讨论:我们今天学习的有图有文字的应用题和以前学习的图画应用题比较,有哪些地方相同,哪些地方不同?
引导学生汇报:
相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法算。从一个数里去掉另一个数,求还剩多少,用减法算。
不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些。
5、看书,质疑。
三、课堂小结。
今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算。
四、随堂练习。
1、练习十九第1题(图片:练习3)。
先让学生自己把算式写到练习本上,然后订正。订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的。
2、比比看哪组先夺得红旗(图片:练习4)。
把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗。
3、游戏“你争我抢”【详见探究活动】。
布置作业
(投影片出示)
让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题。
板书设计
应用题
教案点评:
教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。
《比的应用》教学设计 篇12
1、 让学生独立解答例3的三道题目
2、 讨论:
(1)这三道应用题之间有什么联系和区别?
(2)列方程解应用题的步骤是什么?
①审题;(弄清题意)
②设未知数;
③找出等量关系、列方程;
④解方程;
⑤检验、写答案;
(3)用方程解和用算术方法解,有什么不同?
方程解:A、用字母代表未知数参加列式与运算;
B、列出符合题中条件的等式;
算术解:A、算式中应全是已知数;
B、算式必须表示所求的未知数;
3、 练习:
① 114页“做一做”;
② 练习二十四的第1、2题。
三、巩固练习:(补充练习)
1、①男生50人,女生比男生的2被多10人,女生多少人?
②男生50人,比女生2被多10人,女生多少人?
③全班50人,男生比女生的2倍多10人,男、女生各多少人?
2、①果园里的桃树和杏树共360棵,杏树的棵数是桃树的4/5。桃树和杏树各有多少棵?
②果园里的桃树和杏树共360棵,杏树的棵数比桃树少50棵。桃树和杏树各有多少棵?
四、作业:
联系二十四3、4、5、6题
《比的应用》教学设计 篇13
一、教材分析
本节《浮力的应用》是在学习了上节《浮力》,知道浮力的产生及其大小的基础上,进一步学习物体浮沉的条件,知道物体浮沉条件在实际生活中的应用,理解轮船、潜水艇、气球和飞艇是如何改变浮力或重力,来实现浮沉的,通过本节课的学习使学生体会物理就在我身边,初步学会用浮力知识解决生活中的实际问题。
二、学情分析
本节课学生已经掌握基础知识较扎实,已经学习了系统的力学基础知识,刚学过浮力产生的原因及阿基米德原理,有强烈的好奇心和求知欲望,知识面广,学习习惯较好,自学能力较强。本节课主要指导学生应用实验归纳总结本课的教学重点、难点,随着实验的总结、拓展,真正发挥了学生的正常思维潜能,激发了学生对自然科学的探究,搜集整理浮力在生产、生活中的应用,培养了学生实验操作能力和团结协作的精神。
三、设计思路
根据浮力知识的教学分解,本节教学的知识要点:一是物体的浮沉条件;二是浮沉条件的应用。知识本身的难度并不算大,但贯穿在从如何调节浮力与重力的大小关系去理解浮力的应用事例这个分析过程要求较高,是进行本节教学的关键,为此,本节教学的策略设计是:从观察、分析、比较物体的浮沉情况→认识物体的浮沉条件(受力条件和密度条件)→调节浮力与重力的大小关系→理解浮力的应用(轮船、潜水艇、气球和飞艇、选种诸方面的应用)。
四、教学目标
1.知识与技能
知道物体的浮沉条件;
知道浮力的应用
2.过程与方法:
通过观察、分析、了解轮船是怎样浮在水面的;
通过收集、交流关于浮力应用的资料,了解浮力应用的社会价值。
3.情感态度与价值观
初步认识科学技术对社会发展的影响。
初步建立应用科学知识的意识。
五、教学重点:知道轮船、潜水艇、气球、飞艇的工作原理。
六、教学难点:理解改变物体所受的重力与浮力的关系,能增大可利用的浮力。
七、教学仪器:烧杯、水、体积相同的蜡块和铁块、两个铁罐子、沙子、潜水艇模型、热气球模型、多媒体课件。
八、教学流程:
(一)新课引入
[演示]:1.出示铁块和蜡块让学生观察发现它们体积相等。
2.将体积相同的铁块和蜡块同时浸没在水中后松手。
[现象]:铁块沉入杯底而蜡块上浮最终浮在水面。
[提问]:1.浸没在水中的铁块、蜡块(松手后)各受到什么力?
(浮力、重力)
2.铁块和蜡块受到的浮力相等吗?
(相等。因为V排相等,根据阿基米德原理可知浮力相等。)
3.既然铁块和蜡块受到的F浮相同,为什么松手后铁块沉底而蜡块上浮?
液体中,物体的浮沉取决于什么呢?
[讲解]:物体的浮沉条件:
分析蜡块:松手后,浸没在水中的蜡块所受到的F浮>G蜡,所以蜡块上浮。当蜡块逐渐露出水面,V排减小,浮力减小,当F浮= G物时,蜡块最终漂浮在水面。即:F浮>G物上浮,最终漂浮。
分析铁块:松手后,浸没在水中的铁块所受到的F浮<G铁,铁块下沉。到达容器底部后,铁块受到F浮、G铁和F支,三力平衡,静止在容器底,我们说铁块沉底。即:F浮<G物下沉,最终沉底。
若一个物体浸没在水中,松手后F浮=G物,受力平衡,物体的运动状态不变,我们说物体悬浮在液体中。即:F浮=G物,最终悬浮。
总结:通过上述分析,我们知道浸在液体中物体的浮沉取决于物体所受F浮与G物的关系。
(二)进行新课
1.讨论:
(1)木材能漂浮在水面,其原因是什么?
(2)把一根木头挖成空心,做成独木舟后,其重力怎么变化?它可载货物的多少怎么变化?重力变小,可以装载的货物变多。
[指出]:从浮力的角度看,把物体做成空心的办法,增大了可利用的浮力,而且这种古老的“空心”办法,可以增大漂浮物体可利用的浮力。
[质疑]:密度比水大的下沉的物体有没有办法让它上浮或漂浮呢?
2.实验:
两个外形相同的铁罐子,一个空心,一个装满沙;同时按入水中,松手后实心的下沉,空心的上浮最终漂浮。
[质疑]:(1)铁的密度大于水的密度,空心的铁罐子为什么能漂浮呢?可能是因为什么呢?
(因为它是空心的,F浮>G物,所以能上浮,最终能漂浮。)
(2)要想让实心的铁罐子也漂浮,可以怎么办呢?
(把沙取出来,变成空心的。)
(3)大家的想法是如何调节的铁罐子的浮沉的呢?
(F浮不变,挖空使G物变小,当F浮>G物,铁罐子自然就浮起来了。)
[指出]:上述实验告诉我们采用“空心”的办法,不仅可以增大漂浮物体可利用的浮力,还可以使下沉的物体变得上浮或漂浮。
3.应用
轮船
(1)原理:采用把物体做成“空心”的办法来增大浮力,使浮力等于船和货物的总重来实现漂浮。
(2)排水量:满载时,船排开的水的质量。
即:排水量=m船+m货
[质疑]:1.轮船从河水驶入海里,它的重力变不变?它受到的浮力变大、变小还是不变?(不变,始终漂浮)
2.它排开的液体的质量变不变?(不变)
3.它排开的液体的体积变不变?
(变,ρ海水>ρ水,所以V排海水<V排水)
4.它是沉下一些,还是浮起一些?(V排变小了,所以上浮一些)
[强调]:同一条船在河里和海里时,所受浮力相同,但它排开的河水和海水的体积不同。因此,它的吃水深度不同。
潜水艇
[学生实验]:
潜水艇能潜入水下航行,进行侦查和袭击,是一种很重要的军事舰艇。它是怎么工作的呢?我们用打吊瓶用的小塑料管来模拟潜水艇。请同学们利用和塑料管连接的细管给塑料管吹气或吸气。
现象:吸气时,水逐渐进入管中,管子下沉;吹气时,管中的水被排出,管子上浮;
[质疑]:(1)小塑料管浸没在水中所受F浮是否变化?
(塑料管形变很小,V排基本不变,所以可以认为F浮不变)。
(2)那它是怎样上浮或下沉的呢?
(吹气时,水从管子中排出,重力变小,F浮>G物,所以上浮;吸气时,水进入管子,重力变大,F浮<G物,所以下沉)
[讲解]:潜水艇两侧有水舱,当水舱中充水时,潜水艇加重,就逐渐潜入水中;当水舱充水使艇重等于同体积水重时,潜水艇就可悬浮在水中;当压缩空气使水舱中的水排出一部分时,潜水艇变轻,就可上浮了。
潜水艇:
原理:靠改变自身重力来实现在水中的浮沉。
[强调]:潜水艇在浸没在水下不同深度所受浮力相同。
气球和飞艇
[演示]:“热气球”的实验。
[质疑]:酒精燃烧后袋内空气密度怎样变化?
原理:ρ气<ρ空气,使它受到的F浮>G物而升空。
[讨论]:要使充了氦气、升到空中的气球落回地面,你们能想出什么办法?要使热气球落回地面,有什么办法?(放气或停止加热)
其他应用
密度计、盐水选种等。
《比的应用》教学设计 篇14
学习目标:
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。
学情分析、教材处理:
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
教学准备:水杯、水、鲜奶、茶、秤、课件。
教学过程:
一、分配礼物
师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?
1、想一想
① 我将礼物的一半给男生、另一半给女生,你们说怎么样?
② 如果你觉得不太合理,那你们认为我应当怎样分呢
③ 调查班级男女生人数
④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?
如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……
⑤ 为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】
2、分一分(教师拿出纸杯)
① 不知道有多少杯子,你建议怎么分呢?
② 依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
3、比一比
① 出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
② 其实,平均分也是按比分的一种,这个比就是1:1。
③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】
二、配制奶茶
1、制茶前明确:
A、 制作奶茶需要什么材料?
B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?
C、那你们想想要按着怎样的比来配呢?谁来提议一下?
D、 谁理解这个比的含义了?
E、哪一个单位最合适呢?
2、回归具体的量
A、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?
B、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
4、品尝奶茶后的思考
A、感觉怎么样?有什么改进的建议?
B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗
师:我这一勺是多少你才认为可以在这个比中占1份呢?
C 、小结:的确, 几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?
D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的`转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】
三、回归生活
师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?
1、第一站:某大学后勤部
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
2、第二站:四丰农药加工厂
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
3、第三站:木材加工厂配料车间
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】
4、第四站:人民法院民事审判厅
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。
① 你们想要什么条件呢?
② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
“ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”
⑤ 现在你知道法官怎么分配财产的了吗?
【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】
四、总结反思
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
《比的应用》教学设计 篇15
教学内容:教材第58页例4和“练一练”,练习十二第5—7题。
教学要求:
使学生初步学会列含有未知数z的等式解答相差关系中逆叙的一步计算应用题的方法,进一步掌握列含有未知数芦的等式解答应用题的步骤和思路,能正确列出含有未知数j的等式解答相差关系的逆叙应用题;进一步培养学生的分析、推理和解题能
教学过程:
一、复习铺垫
1.列含有未知数i的等式解答应用题。
(1)养鸡场养鸡500只,卖出一些后还剩300只,卖出了多少
(2)张师傅和李师傅一共加工零件135个。其中李师傅加工了75个,张师傅加工了多少个?
指名两人板演,其余学生分两组,每组完成一道,各人做在练习本上。
集体订正。
提问:列含有未知数工的等式解应用题时,要几步?第(1)题列含有未知数j的等式是怎样想的?第(2)题呢?
指出列含有未知数x的等式解答应用题时,要根据题意找出数量关系式,对照着数量关系式来列出等式。
2.应用题。
粮站运来面粉96袋,运来的大米比面粉多24袋,运来大米多少袋?
读题后让学生想一想,这样的题用什么方法解答。学生口答算式和得数,老师板书。
提问:这道题为什么用加法算?题里的数量关系式是怎样的?
(板书:面粉的袋数+24=大米的袋数)
二、教学新课
1.出示例4,读题。
提问:例4与上面一道题有什么相同和不同的地方?
这两道题虽然有不同的地方,但相同的都是大米比面粉多24袋。想一想,例4的数量关系与上一题一样吗?
2.谁再来说一说,例4的数量关系是怎样的?为什么?
(评析:通过重复提问,可以突出例4的数量关系,便于学生列出含有未知数j的等式。提问“为什么”,有利于学生认识根据题里怎样的条件找相差关系逆叙应用题的数量关系式。)
根据这个数量关系式,你能列出含有未知数j的等式解答例4吗?
第一步先做什么?(板书设未知数x,并说明注意写“解”字。)
第二步要做什么?列出怎样的等式?(板书:x+24=120)
第三步求未知数x的值要怎样算?(学生口答,老师板书,说明求出x的值不带单位名称)你是怎样想的?
写出答句。
3.你能根据题意,检验这样解答是否正确吗?谁来告诉大家,的面粉有24袋。120一x=24)
追问:为什么可以列这样的等式?
怎样求未知数工?(学生口答,老师板书,并写出答句)
5.提问:今天学习的也是用什么方法来解答应用题?(板书课题)例4可以列几种等式来解答?这两个等式都是根据什么列出来的?
指出:列含有未知数j的等式解答应用题的关键,是根据题意想数量关系式。这样才能对照数量关系式列出含有未知数x的等式。
想一想,例4是根据题里什么条件来想数量关系式,列含有未知数x的等式的?
三、巩固练习
1、根据下面的条件说一说数量关系式。
(1)鸡比鸭多30只。
(2)杨树比柳树少15棵。
(3)美术班比舞蹈班少16人。
(4)今年收的小麦比去年多1500千克。
2、做“练一练”。
(1)完成第(1)题。
读题。提问数量关系式。
指名一人板演,其余学生做在练习本上。
集体订正。提问:这里的等式是根据什么来列的?
(2)完成第(2)题。
读题。让学生先说数量关系式。
学生做在练习本上。然后学生口答,老师板书。
提问:列等式时你是怎样想的?
强调:像上面这样的几道题,都要先根据题里“谁比谁多或少多少”想数量关系式,再对照数量关系式列出等式来解答。
3、练习十二第5题。
说明要求,让学生在课本上练习。
提问:第(1)题是根据怎样的数量关系式来列等式的?第(2)题呢?
四、课堂小结
列含有未知数工的等式解答应用题,要分几步做?要根据什么来列含有未知数工的等式?解题时要注意什么?
五、课堂作业
练习十二第6—7题。
《比的应用》教学设计 篇16
教学目标:
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力。
情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答按比例分配应用题。
教法:
启发引导法,演示法学法:观察比较,合作交流。
教学准备:
多媒体课件。
教学过程:
一、复习解决下面各题:化简:27千克:750克千米:800米求下面各比的比值:66学生独立完成,抽生板演,集体订正。
二、情景导入学生自由讨论
1.一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?
2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。
三、新授新知教学例2
(1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)
(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)
水的体积:500×4=400(ml)
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的体积:500×1/5=100(ml)
水的体积:500×4/5=400(ml)
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)
做一做第1、2题,学生独立完成,抽生板演,集体讲评。
五、全课总结
今天我们学到了什么?
六、家庭作业
教材第50页,练习十二1-3题。
教学反思:
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
《比的应用》教学设计 篇17
教学内容:
北师大版小学数学教材六年级上册第55—56页。
教学目标:
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用。
3、提高解决问题的能力。
教学重点:
理解按一定比例来分配一个数量的意义。
教学难点:
根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分的量。
教学准备:
PPT
三角形学具
练习题
教学过程:
一、复习引入:
师:同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“六年级一班的男生人数与女生人数之比是3:4”,(PPT)从这个比中,你能推断出什么信息呢?
生1:女生人数与男生人数之比是4:3、
生2:全班的人数是7份,男生占其中的3份,女生占其中的4份。
生3:男生人数是女生人数的3/4。
生4:女生人数是男生人数的4/3、
生5:男生人数是全班人数的3/7。
生6:女生人数是全班人数的4/7。
生7:男生人数比女生人数少1/4。
生8:女生人数比男生人数多1/3、
师:看来,同学们对“比”的知识掌握得相当不错。
二、探究新知:
1、创设情境:
师:最近,笑笑遇到了一个问题。(PPT)谁来说说是什么问题?
生:她要把一筐橘子分给幼儿园的大班和小班,可是不知道怎么分合理。
师:你们能帮助她吗?怎么分合理?谁来说说你的想法?
生1:按班级来分,每个班分这筐橘子的一半。
师:每个班分这筐橘子的一半,这是我们以前所学习过的哪种分法?
生:平均分。
师:还有谁想发表自己的意见?
生2:按大班和小班的人数比来分。
师:按人数比来分是按几比几分?
生:按3:2分。(板书:3:2)
师:那你们知道“平均分”是按几比几来分吗?
生:按1:1分。
师:我们以前所提到的“平均分”,其实就是按照1:1的比进行分配,但是在一些特殊的情况下按照“平均分”并不合理。这时候我们就要考虑一些特定的因素,然后按照一定的比来进行分配。(PPT:按3:2分合理)
2、揭示课题:
师:这节课,我们就来学习按一定的比进行分配的实际问题。(板书:比的应用)
3、分一分。
(1)出示题目:这筐橘子按3:2应该怎样分?(PPT)
①小组合作(用三角形代替橘子,实际操作)。
师:请同学们以小组为单位,拿出你们桌上的纸袋,用里面的三角形代替橘子,来实际操作一下。请大家一边分,一边在本子上记录下你们分配的过程。最后看看大班和小班各能分到多少个橘子。
②小组汇报。(投影学生的分配记录)
师:分好了吗?哪个小组愿意来说说你们分配的过程?
生1:我们是这样分的:先给大班3个,小班2个;然后再给大班3个,小班2个;第三次还是给大班3个,小班2个,就这样,我们一共分了8次,分完了。我们由此知道这堆三角形有40个,最后大班分到了24个,小班分到16个。
师:分了8次分完了,看来你们做事比较有耐心。事实上很多科研成果也是通过科学家们的无数次实验得来的,所以耐心完成一件工作是值得我们学习的。
生2:我们前两次分的方法和他们一样,第三次分的时候我们发现还剩下很多,我们就给大班分了6个,小班分4个,这样又分了2次就分完了。这堆三角形有40个,最后大班分到24个,小班分到16个。
师:分的结果都一样,但看来你们分的次数要比他们少一些,分得快一些,看来你们也动了脑筋。
生3:因为要按3:2来分,而三角形有一大堆,所以我们就想给大班分30个,小班分20个,后来发现三角形不够,就换成给大班15个,小班10个;剩下的大班给9个,小班给6个,一下子就分完了。
师:你们虽然开始不够,但你们的想法很好,而且实际上你们也一下子就分完了,能干。
生4:列算式解。
师:利用份数来解决这个问题,你们的见解很独到。
③发现规律。
师:同学们,在刚刚分三角形的过程中,你们有什么发现?(PPT:表格)谁来说一说?
生1:我觉得不管怎样分,我们都要按照3:2的比来分,也就是我们每次分的三角形的个数都必须是3:2、
生2:我发现6:4,30:20,15:10,9:6结果都是3:2、
生3:我觉得按3:2的比来分和以前我们学过平均分是不一样的。平均分两个人分得的个数相同,而按3:2的比分来分的话,两个人分得的个数不同。
(2)出示题目:如果有140个橘子,按照3:2又应该怎样分?(PPT)
①独立思考,合作交流。
师:如果现在有140个橘子,按照3:2分给大班和小班,又该怎么分呢?每个班能分到多少个?请同学们思考一下,自己在本子上写一写,算一算。写完之后,可以在小组内交流交流。 ②汇报展示。(抽生板演列式的两种方法)
师:还有不同的方法吗?(投影其他方法)
师:这是谁做的?你是怎么想的?
方法一:表格
方法二:画图。
方法三:列式。
A:3+2=5 140×3/5=84(个)140×2/5=56(个)
答:大班分84个,小班分56个,比较合理。
师:为什么要用“3+2”?“3/5”在这里表示什么?
生:用“3+2”算出橘子的总份数,3/5表示大班能分到橘子总数的3/5。
B:3+2=5 140÷5=28(个)28×3=84(个)28×2=56(个)
答:大班分84个,小班分56个,比较合理。
师:为什么要“÷5”?
生:“÷5”是把总数平均分成5份,先求出1份是多少,再给大班分3份,小班分2份。
③比较不同的方法。
师:还有其他的做法吗?刚刚同学们想的这些方法都可以。在这么多的方法中,你比较喜欢哪一种呢?
师:列式计算的A方法,是先求出总份数,然后找到各部分的数量占总量的几分之几,最后按照“求一个数的几分之几是多少”的方法,求出各部分的数量;而列式计算的B方法,是先求出总份数,然后算出一份的数量,最后根据各部分所占的份数来求出各部分的数量。
4。小结。
师:我个人觉得,同学们的这些方法各有千秋,都很不错,建议大家都掌握。那么在解决实际问题的时候,关键还是要认真分析数量关系,弄清各个数量之间的份数。
三、巩固新知。
1、填一填。
师:在我们的生活中,还有许许多多按照一定的比来进行分配的问题,下面我们就一起来看一看。(PPT)
师:(5题)甲班能得到18本。怎么得到的?(2题)按1:1来分,也就是平均分。
2、试一试。
师:试一试你能试着独立完成吗?做在课堂作业本上。(投影学生作业)
师:写完了吗?我们来看看这位同学做的。对吗?
生:回答。
四、知识拓展:
1、数学故事:阿凡提分马。
师:紧张的学习之后,我们一起来看一个小故事。(PPT)
师:听了这个故事,你想说什么?
师:其实,这个故事的问题根本,其实是在于原先商人的遗嘱中,1/2,1/4和1/6相加的和不为1、有兴趣的同学,我们可以下来以后再讨论。
2、闯关活动。
师:老师这里还有几个问题,想请同学们思考一下。
五、课堂小结。
师:通过今天的学习,同学们有什么收获呢?
《比的应用》教学设计 篇18
教学内容:
冀教版小学数学六年级上册第二单元《比的应用》。
教学目标:
1、知识方面:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。
2、能力方面:培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力,培养学生合作学习及归纳、总结、概括的能力。
3、情感方面:创设民主和谐的学习氛围,在关注培养学生自主探索意识、灵活思维品质过程中形成积极的学习情感,让学生学会评价自我,欣赏他人。
教学重点:
掌握按比分配应用题的结构特点和解题思路。
教学难点:
正确分析,灵活解决按比分配的实际问题。
教具准备:
课件
学习过程:
一、创设情境。
(1)3月12号是植树节学校把种植88棵小树苗的任务分给六年级的每位同学,怎样分配才合理?(平均分配)
(2)李明和黄华合办了股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?
(在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。)
二、自主学习,合作探究,
1、出示题目:幼儿园大班30个人,小班20个人,把这些橘子分给大班和小班,怎样分比较合理?
请同学们想一想:你认为怎样分合理?说一说你的分法?
2、出示题目:这筐橘子按3:2该怎样分?
自学提示:
(1)可列表或画图。
(2)联系比与分数的关系,将本题转化成相关的分数应用题。
(3)你还有其它的什么想法,用你的方法试试吧!
3、小组合作。
4、各小组汇报自己的分法。
5、解题思路:
(1)明确分什么?有多少?怎样分?
(2)计算总份数。
(3)根据具体数量与对应分数的关系解题。
师:解决生活中的实际问题的时候,同学们要认真分析数量关系,可以选择多种方法解答。
三、达标检测。
1、填空。
(1)把60根小棒按2:3的比分成两堆,一堆有()根,另一堆有()根。
(2)把60根小棒按1:1的比分成两堆,一堆有()根,另一堆有()根。
2、实际应用。
(1)六年级三班要举行联欢会,班委决定要买12千克水果,据调查,爱吃苹果的同学和爱吃梨的同学的人数比是2:1,请你算一算,苹果和梨各买多少千克?
(2)用2份水泥、3份沙子和5份石子配制成一种混凝土。配制4吨这种混凝土,需要水泥、沙子、石子各多少吨?
3、拓展延伸。
把刚开始上课时老师留下的第二道题完成。
四、回顾整理,反思提升
学生说说自己这节课的收获。
五、课堂作业:
课后练一练的1题、2题、3题。
《比的应用》教学设计 篇19
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
知识与技能:
能运用比的意义解决按照一定的比进行分配的实际问题。
过程与方法:
讲练结合,小组合作,三疑三探。
情感、态度、价值观:
进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、创设情境,设疑自探
1、课件出示教材中的情境图,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的人数来分比较合理。
2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。
(没有告诉学生小棒的数目。)学生分好后,交流分法。
3、小结。
二、解疑合探,知识迁移
1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。
2、交流方法,展示。学生可能出现的方法:
⑴、借助表格分。
⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。
3、引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶利用乘法的意义解题。
4、你喜欢哪种方法,请说明理由。
5、回忆学过的“平均分配”,可以看成几比几?
三、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的比是2:9。需要巧克力多少克?
2、3月12日是植树节,学校把种植60棵小树苗的任务分配给六年(3)班和二年(3)班,两班人数相等。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
四、总结评价,课后延伸。
1、总结。
2、布置作业。
板书设计:比的应用
大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
3、先求出一共分成几份,再求出大班和小班分的个数分
(以上方法可借助课件演示帮助学生理解。)
《比的应用》教学设计 篇20
教学内容:
人教版小学六年级数学第三单元第三节
教材分析:
《比的应用》是人教版小学数学六年级第十一册第三单元49页的内容。这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个课例,掌握了《比的应用》的解题方法,不仅能有效地解决实际生活、现实工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”奠定了基础。
学情分析:
学生在学习了比的意义,比的基本性质,分数的意义等知识后,能将知识融会贯通,能将平均分与不平均分份数的知识联系和应用起来,使学生完全能找到按比例分配的方法。教师只起到启发,点拨和深化引导的作用。
教学目标
1、运用比的意义解决按照一定的比进行分配的实际问题;
2、在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。
教学重点和难点:
能运用比的意义解决按一定比例进行分配的实际问题。
教学过程
一、复习旧知 情景导入
(出示课件)
六年级共有38人,其中,男,生和女生的人数比是7:12,男,生是女生的人数的,女生是男生的人数,男生是全班人数的,女生是全班人数的xxx。
【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。为学习新知做铺垫
2、同学们请看大屏幕:这里有哪些数学信息?请你读一读。(课件图片出示)
(1)地球上的淡水含量与地球上水总量的比为3:100。
(2)安利洗涤剂与水的正常比是1:8。
(3)我们喝的鲜橙多中橙汁与水的比是1:9。
(5) 妈妈做米饭时米与水的比是1:3。
(5)一种咖啡奶,咖啡和奶的比为2:9
3、生活中平均分配的问题:
学校把种植42棵小树苗的任务分配给六年级人数相等的两个班,怎样分配才合理?
4、李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?
师板书:按比例分配
【设计意图】学生能从三个例题中体会平均分配和按比例分配的实际意义。留下悬念,激发学生的学习兴趣。
二、合作学习 自主探索
(一)理解比例分配的意义
把一个数量按照一定的比例来分配。这种分配方法通常叫做按比例分配。
(二)学习例2:(出示例2):
某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少?
1、 指名读题、理解题意
2、 学生尝试:请同学在练习本上尝试解答一下,再在小组内进行交流
3、生汇报:不同做法的两名同学到前面板演,并要求板演的学生说出这样解答的道理
解法1:总份数 1+4=5 解法2 :总份数 1+4=5 每份是500÷5=100(毫升) 浓缩液有 500×1/5=100(毫升)
浓缩液有100×1=100(毫升) 水 有 500×4/5=400(毫升)水有 100×4=400(毫升)
答:浓缩液有100毫升,水有400毫升。
4、 提问:这两名学生解答的是否正确,要求学生说出每步求的是什么
5、比一比:比较一下这两种解法有什么不同,与我们学过的哪些知识有关(可在小组内交流)
学生汇报总结:
方法1是按平均分的份数进行计算的:先算出每份的体积,再分别算出浓缩液和水的体积。
方法2是按分数的意义进行计算的:先找出各部分数占总数的几分之几,再根据分数乘法的意义,分别算出浓缩液和水的体积。
6、这道题做得对不对呢?我们怎么检验?
提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。
强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。
(三)老师总结并强调计算方法:首先看清题里的条件给的是哪几个量的比再看题中给的量是否是这几个量的和,而后在选择合适的计算方法。并养成验算的好习惯。
(四)质疑问难
四、巩固新知 反馈练习,
(1)填空:
1)把20根小棒按2:3的比例分成两堆,一堆( )根,另一堆( )根。
2) 把20根小棒按1:3的比例分成两堆,一堆( )根,另一堆( )根。
(2)六(1)班要举行联欢会,班委决定买12千克水果,据调查,爱吃苹果的同学人数和爱吃梨的人数的比2∶1。请你算一算,苹果和梨分别买多少千克
(3)生活中的问题
李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?
要求:独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。
【设计意图】此题为按比例分配问题的一个变式,解答开始上课时的疑问。引导学生找出部分量的比。让学生在解决实际问题的过程中感受学习的乐趣和价值。
2)一种什锦糖是由奶糖、水果糖和酥糖按照2︰5︰3混合成的。要配制这样的什锦糖500千克,需要奶糖、水果糖和酥糖各多少千克?
五、谈收获,课堂总结。
【《比的应用》教学设计】相关文章:
比的应用的教学设计07-05
《比的应用》教学设计01-20
《比的应用》教学设计06-29
比应用教学设计04-04
比的应用教学设计06-12
《比的应用》教学设计与教学反思07-21
比的应用教学设计模板05-27
《比的应用》教学设计范文07-05
《比的应用》的教学设计范文04-11
《拓展与应用》教学设计09-03