五年级上《组合图形面积》教学设计

时间:2023-03-22 22:11:34 教学设计 我要投稿
  • 相关推荐

五年级上《组合图形面积》教学设计(通用10篇)

  作为一名优秀的教育工作者,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。优秀的教学设计都具备一些什么特点呢?以下是小编为大家收集的五年级上《组合图形面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

五年级上《组合图形面积》教学设计(通用10篇)

  五年级上《组合图形面积》教学设计 篇1

  【教学内容】

  北师大版五年级上册数学教科书第75页。

  【设计理念】

  主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。

  【教材分析】

  学生在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。在此基础上学习组合图形,学习此部分知识,一方面可以巩固已学的基本图形,另一方面将所学的知识进行综合运用,提高学生综合解决问题的能力。在学生探索问题,解决问题的过程中渗透数学转化的思想,在学生灵活运用多种方法解决问题的过程中培养学生优化的意识,从而培养学生思维的灵活性。

  【学情分析】

  五年级的学生正在经历自主高效的实验,学生无论从自学能力,还是课堂的积极探索都有了喜人的变化,学生学习方式的变化更加促使老师要以学定教,学生在学习的过程中可能会有这样或那样的问题,特别是本节课要探究多种方法解决问题,虽然学生已经在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。但对于组合图形面积的计算学生可能在解决此问题的策略——即数学的转化的思想上没有充分地认识,另外学生在理解用多种方法解决问题时没有优化方法的意识,需要教师的引导与点拨,但我相信学生在老师的引导下会完成本节课的任务。

  【学习目标】

  1.在自主探索的活动中,理解计算组合图形面积的多种方法。

  2.能根据各种组合图形的条件,有效地选择计算方法并进行正确地解答。

  3.能运用所学的知识,解决生活中组合图形的实际问题。

  【教学重点】

  掌握求组合图形的面积的.几种方法。

  【教学难点】

  选择有效的方法解决实际问题。

  【教学准备

  多媒体课件

  【教学过程

  课前谈话:

  老师很高兴能和大家一起来上这节课。我相信:我们五x班全班同学都能把最精彩的一面展示出来。你们喜欢数学吗?想不想把数学学得verygood非常棒!老师告诉你学好数学的小诀窍:认真听,用心想,积极说。能不能做到这三点?让我们带着自信走进课堂!

  【设计意图】简单的几句话,拉近了学生与老师的距离,关注学生的情感体验,同时渗透良好的学习习惯的培养。九个字书写在黑板上以提示学生。

  一、课题导入。

  1.老师今天给大家带来了一些漂亮的图片,来欣赏一下。

  (多媒体出示小鱼图、火箭、房屋平面设计图、中队队旗等生活中的组合图形。)

  一起说说你看到了什么?小鱼图是由两个三角形组成的……引导学生说出每幅图是怎样组成的。你们还记得它们的面积公式吗?

  2.教师小结:上面的每个图形都是由我们学过的图形组成的,像这样由几个简单的图形组成的图形叫组合图形。这节课,我们就来研究组合图形的面积。(板书课题)

  【设计意图】:课开始,充分发挥多媒体的优势,呈现学生熟悉的、生活中的组合图形,给学生视觉上的刺激。唤醒学生的已有认知,激发学生的求知欲。

  二、展示目标,师生共同解读目标。(关键词:理解方法,解决问题)板书关键词。

  【设计意图】:使学生明确本节课所学内容,确立所要达成的目标。

  三、自主探究,获取新知

  1.联系生活,提出问题。

  (1)小华家新买了住房,计划在客厅铺地板。请你估计他家至少买多少平方米地板,再实际算一算。(出示课件)客厅平面图。

  【设计意图】:在实际问题情境中激发学生探索问题的兴趣,从而产生自主学习的动机。

  2.自主探究,解决问题。

  教师课件出示导学提纲:阅读教材第75页,思考下列问题。

  (1)我们已经学过哪些图形的面积?怎样求它们的面积?

  (2)请你估一估小华家至少买多少平米的地板?试说出你的理由?

  (3)计算地板面积,你还有哪些办法?尝试用画图的方法说明~

  (4)你能举例说一说计算组合图形面积的方法吗?

  3.学生先自学然后组内交流。

  (教师预设):

  A.学生可能转化的图形有:

  B.学生可能会运用多种方法求出客厅的面积,但是不清楚解决此问题的策略——即转化的数学思想。

  4.教师深入到小组与学生共同研究问题,了解学生的自学情况。

  5.学生在学习单的正面尝试解答,老师巡视,让学生把不同的转化方法展示到黑板上。

  四、展示汇报:

  1.各组按展示到黑板上的转化方法做汇报,学生讲解自己的思路。

  【设计意图】计算组合图形的面积最重要的一步是运用转化思想把图形分割或添补成几个基本图形。把转化的过程和计算的过程分解开来进行,有效地突破了难点,在学生在转化的过程中思维真正的动起来。上黑板贴出学生的探究结果,让学生讲解自己的思考过程,也许学生表达的不完整,但毕竟是学生自己思考的结果,所以应该给予肯定,以激发学生的学习积极性,渗透一题多解的方法,培养学生思维的灵活性。

  2.计算面积。

  学生分组用一种方法计算图形的面积,最后全班订正。(在学习单背面完成)

  教师预设点拨:观察上面的几种方法,你认为哪些方法更简单一些?你是怎样想的?

  教师预设点拨:

  推导平行四边形和三角形的面积公式,计算异分母分数相加减时我们都用到转化思想。今天我们学习组合图形的面积时又运用了转化的策略,看来数学的转化的思想很重要。

  【设计意图】在经历了分割图形或添补图形的思考过程,并对几种方法进行比较优化以后,再动手计算,给学生提供了再一次选择解决方法的机会,比较出几种方法的特点,培养学生的质疑能力,提高学生的思维灵活性。

  五、达标检测:

  1.(基本题)下面的各个图形可以转化成哪些已学过的图形?(教材76页练一练第一题)

  学生自己先思考如何把这个图片转化成已经学过的图形,是分还是补?分怎么分?补如何补?

  2.(必做题)试试:你知道这个图形的面积吗?

  (每小格长度是1厘米)

  【设计意图】让学生在认真观察的基础上,用割补的方法把图形转化成一个长方形,对转化的思想有更深刻的认识。

  3.如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

  4.(必做题)如图,有一面墙,粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?(教材76页练一练第二题)

  六、拓展延伸

  1.下图是由两个正方形组成,求阴影部分的面积。(单位:米)

  2.用组合图形面积的计算方法,可以解决生活中的很多问题……如中队队旗,有兴趣的同学课下可以量一量、算一算中队队旗的面积。

  七、学教反思

  1.学习本课你有哪些收获?

  2.你觉得这节课你表现怎么样?给自己评价一下!

  五年级上《组合图形面积》教学设计 篇2

  一、教学目标

  1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。

  2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。

  3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。

  二、教材分析

  组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。

  三、学校及学生状况分析

  我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。

  组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的`思维空间,鼓励学生积极探索。

  四、教学设计

  (一)观察动画,复习旧知,引出新知

  1、观察动画,分析引入

  (媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

  师:观察这幅图画,你发现了什么?

  生:很多的基本图形,组成了很多的图形)

  师:这些由基本图形组合而成的图形,就叫做组合图形。

  2、复习基本图形面积公式

  师:还记得我们都学过哪些基本图形吗?

  (随着学生回答,按学习的顺序贴各个基本图形)

  问:那谁还记得这些基本图形的面积公式?

  (随着学生回答,在各个基本图形后面写公式)

  师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )]

  (二)动手拼图,初探方法

  1、自拼图形,分析要素

  师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

  请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

  边做边思考:

  师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

  师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

  (学生活动,教师巡视,指导画高。)

  2、展示图形,分析条件

  (学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)

  师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

  (强调公共边:既做长方形的长,又作三角形的底。)

  3、打开思路,探索面积

  师:怎样求一个组合图形的面积?

  生:分另计算三角形与长方形的面积,然后相加。

  师:谁能说一说具体的计算过程?

  五年级上《组合图形面积》教学设计 篇3

  教学内容:

  教科书p92~93页。

  教学目标:

  1. 使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

  2. 综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  3. 培养学生认真观察、独立思考、合作交流的能力和创新意识。

  教学重点:

  掌握计算组合图形面积的方法。

  教学难点:

  如何把组合图形变成已学过的平面图形来计算面积。

  教具准备:

  课件、可拼组的几个简单平面图形。

  教学过程:

  一. 激趣导入

  1.逐一出示学过的平面图形,说出它的名称及面积计算公式。随后将图形张贴在黑板上,组成几幅美丽的图案。

  2.观察这些图形,它们与以前学过的平面图形有什么不同?

  小结:这些图形都是由几个简单的平面图形组成的,我们把这样的图形叫做组合图形。(板书:组合图形)

  3.说一说生活中那些地方有组合图形?它们都是由哪些图形组成的?(学生自由说)

  4.认识了组合图形,那么大家还想了解有关组合图形的哪些知识呢?(周长、面积……)这节课我们重点学习组合图形的.面积。(板书:面积)

  二. 探究新知

  1.由图1引出例1.

  (课件出示)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  (1) 认真观察图形,先独立思考,然后把自己的想法和同桌说说。

  (2) 汇报交流。(结合课件演示)

  ① 把组合图形分成一个三角形和一个正方形。

  算式:5×5+5×2÷2

  ② 把组合图形分成两个完全一样的梯形。

  算式:(5+5+2)×(5÷2)÷2×2

  (3)你认为两种方法哪种比较简便?

  师:在计算组合图形的面积时有多种方法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。

  (4) 通过学习,你认为可以怎样计算组合图形的面积?

  学生自由发言,形成初步认识:可以把组合图形分割成几个简单的平面图形,分别求出它们的面积再相加。(板书:分割法)

  (5) 任意选择黑板上的一个组合图形说计算方法。

  2.出示例2. (课件)做一面这样的中队旗要用多少红布呢?(先不出现数字)

  (1)小组讨论。

  (2)汇报交流。

  ①分成两个梯形。

  ②分成一个正方形和两个三角形。

  ③用长方形面积减一个三角形面积。

  ④分成一个梯形和一个三角形。

  (3)提供数据,并选择你喜欢的方法进行计算。

  (4)比较评价。

  (5)你对计算组合图形的面积有了什么新认识?

  小结:根据不同的组合图形,除了用分割法求面积外,还可以先把组合图形添补完整,求出总面积再减去添补上的面积,或用割补法求面积。(板书:添补法、割补法)

  三.巩固拓展

  谈话引出校园建设新规划。

  1.前往综合大楼。求下面指示牌的面积。

  2.这是准备新建综合大楼的一块空地,你能帮学校算算这块地的面积有多大吗?你能想出几种算法?

  3.小小设计师:

  学校想在综合大楼前建一个漂亮的多边形大花坛,种上红、黄、蓝、三种颜色的花,请你设计一种方案,用上学过的图形,并求出三种花的种植面积。

  四.总结全课

  这节课你有什么收获?你觉得最开心的是什么?

  五年级上《组合图形面积》教学设计 篇4

  教学内容:

  人教版小学数学五年级上册第五单元《组合图形面积》。

  教学目标:

  1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。

  教学重难点及关键:

  1、重点:掌握组合图形面积的计算方法。

  2、难点:理解计算组合图形面积的多种方法。

  3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

  教学过程:

  一、复习回顾,揭示课题

  1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?

  2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

  3、组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的.例子来学习组合图形的面积计算。(板书:组合图形的面积计算)

  二、自主探索组合图形面积

  1、出示计算客厅面积问题:

  小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?

  2、请学生们观察这个图形,然后自己先想一想该怎么计算?

  3、小组合作交流,讨论解决组合图形面积计算问题。

  学生可能出现“分割法”和“添补法”

  “分割法”即将上述图形分割成几个基本图形。

  4、讨论“分割法”

  1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。

  2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。

  5、讨论“添补法”

  1)为什么要补上一块?

  2)补上一块后计算的方法是怎样的?

  (让学生都理解这一算法)

  6、先归纳出两大类的方法“合并求和”、“去空求差”。

  小结:谁来总结一下,组合图形的面积应该怎么计算?

  计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。

  看来同学们学得都很不错,现在老师还有几道题想考考大家。

  三、实际应用

  1、先来一题热身题,出示书本试一试。

  2、一展身手,挑战开始。

  右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  可以采取学生独立解决与合作交流的形式

  如果你不会做,可以和你的同桌讨论交流一下。

  3、挑战本领

  一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

  可以采取学生独立解决与合作交流的形式

  4、求图形阴影部分的面积。

  5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)

  可以先四人小组讨论,然后在进行计算。

  四、课堂总结

  在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。

  五年级上《组合图形面积》教学设计 篇5

  教学内容:

  义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。

  教学目标:

  1、认识组合图形,会把组合图形分解成已学过的平面图形。

  2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

  3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

  4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  理解并掌握组合图形的组合及分解方法。

  教具准备:

  多媒体课件

  学具准备

  各种有色卡纸、胶水、剪刀等。

  教学过程:

  一、复习铺垫:

  同学们,老师想知道你们已经学会了计算哪些平面图形的面积?

  二、创设情境,激趣导入。

  师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)

  师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:

  (课件展示)

  我们学过这些图形吗?

  请同学们认真观察,这些图形有什么共同的特征?

  左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?

  像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?

  三、自主学习,探究新知。

  1、组合图形的分解:

  师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。

  ⑴电脑出示书第92页的四幅主题图。

  师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

  ⑵四人小组讨论。

  ⑶小组到实物投影机上展示各种分法。

  ⑷让学生举例说说生活中的组合图形。

  同学们,开动脑筋想想:生活中哪些地方还有组合图形?

  2、自主解决例题。

  师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?

  ⑴出示例题4

  ⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)

  ⑶生汇报。

  师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

  师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)

  ⑷生看书质疑。

  师:下面老师再考考你们是不是真的明白。

  3、出示做一做。问:这块地是由哪些简单图形组成的?

  ⑴生独立计算。

  ⑵生展示思路。

  四、应用新知,解决问题:

  师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

  1.选择题:

  (1)

  上图阴影部分的面积是()

  ①6平方厘米②10平方厘米③5平方厘米

  (2)下面是一块正方形空心地砖,它实际占地面积是()

  ①40×40+13×13 ②40×40-13×13③40×40

  (3)下图的面积计算式子是()

  ①12×5+8×6.5②12×5+8×6.5÷2③8×6.5+(8+12)×5÷2

  师:通过刚才的练习,你认为该怎样求组合图形的面积?

  生自由发言。

  师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)

  2.求中队旗的面积。

  师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的'知识来帮帮老师呢?动手算一算。请小组内分工合作。

  (1)出示讨论提纲:

  你们组能想出几种算法?有没有更简便的方法?

  看哪一小组分工合作的最好?速度最快?

  (2)小组分工合作。

  (3)展示学生的各种算法。

  师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。

  (板书:根据已知条件进行分解)

  五、新知的拓展:组拼组合图形

  谢谢你们,老师终于知道了需要买多少布了。早上老师又接到一个任务,学校的艺术节快到了,要展览同学们的作品。老师想利用这节课把这个任务完成好,大家愿意吗?请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽,就把他们组的作品拿到艺术节上去展览。同学们赶快动手吧。

  1、学生合作组拼。

  2、展示评价学生的作品。

  3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。

  六、总结:

  通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

  附:板书设计

  教学设想:

  《数学课程标准》的基本理念中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的;学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。如何把这个基本理念应用到数学课堂教学中呢?在教学《组合图形的面积》这一课中,我针对这一理念,作了尝试,创设了生动的生活情境,精心设计了学生的学习内容。

  五年级上《组合图形面积》教学设计 篇6

  教学目标

  1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3.渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重点

  在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

  教学难点

  选择有效的计算方法解决实际问题。

  教具准备

  ppt课件、简单图形的面积整理表、铅笔和三角板等学习用具、彩粉笔。

  教学过程

  一、创设情境,生成问题

  老师准备了几幅漂亮的图片,我们一起来欣赏一下,好吗?

  课件展示

  图一图二图三

  请大家仔细观察,这些物品的表面有哪些我们已经学过的图形?(逐一分析,然后重点展示中队旗)它们有什么共同特点呢?(学生口答)

  介绍:上面这些图形都是由几个简单图形组合而成的.,这样的图形叫组合图形。

  板书:组合图形

  师:今天,我们就来探究组合图形面积的计算。

  补充板书:组合图形的面积

  二、探索交流,解决问题

  1.谈话引入

  师:我现在想要做一面中队旗需要多少布呢?也就是求什么?

  生:求中队旗的面积,也就是计算出组合图形的面积。

  2.独立思考,分组讨论

  师:请大家独立思考:组合图形可以转化成哪些学过的图形,怎样计算出组合图形的面积?有了想法之后,和你的同桌说一说。

  生独立思考,同桌交流。

  3.汇报交流

  (1)师:谁来说一说你的想法?

  生:分割成两个梯形。

  师:这是一个不错的想法(板书:分割)。那这种方法能计算出组合图形的面积吗?为什么?

  生:能,因为梯形的上底、下底和高我们都能知道。

  (2)师:大家想想,还有不同的做法吗?

  生:添补成一个长方形。

  师:又是一种不错的方法(板书:添补)。验证一下,这种方法能计算出组合图形的面积吗?怎么求?

  生:能,用长方形的面积减去三角形的面积,长方形的长和宽,三角形的底和高都是已知的。

  (3)生:分割成一个大梯形和一个三角形。

  师:这种方法也可以。大家思考一下,这种方法能计算出组合图形的面积吗?如果不能,缺少什么条件?

  (4)生:分割成一个正方形和两个三角形。

  师:这种方法也可以将组合图形分解成几个简单图形。这种方法能求出组合图形的面积吗?怎样求?

  生:能求出组合图形的面积。用正方形的面积加上两个三角形的面积。(课件分别演示各种方法)

  4.独立计算

  师:下面就请大家选择一种你喜欢的方法,快速的计算出组合图形的面积。

  指名板演。集体订正。

  5.小结

  师:刚才我们用好几种方法求出了中队旗的面积,这些计算方法有什么共同特点呢?

  生:都是把一个组合图形转化成几个简单图形。

  师:数学中我们习惯用分割法或添补法,先用辅助线把一个复杂的组合图形转化成几个比较简单的图形的和或差。如果没有要求用多种方法的,我们尽量选择最简单的方法来计算。画辅助线时要注意画虚线,还要用铅笔和直尺作图。

  板书:转化成简单图形。

  6.我们学习了这么多组合图形知识,请你说一说生活中哪些地方有组合图形。

  三、巩固应用,内化提高

  1.师:同学们的表现真了不起。咱们学校有个老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是用平方米来计算的,请你们帮忙算一算。(课件出示例4)

  师:怎样才能计算出这个组合图形的面积呢?

  (先让学生思考,再动手计算。然后交流汇报。)

  方法一:

  这个组合图形分成一个正方形和一个三角形,分别计算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

  方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方形面积后,再减去两个小三角形的面积。

  方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。

  师:请同学们观察这几种解法,它们有什么相同的地方?

  小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。

  师:非常感谢大家为老师解决了难题。在日常生活中,到处都有组合图形,我们计算面积时,先用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了。这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

  2.课本做一做:新丰小学有一块菜地,形状如右图,这块菜地的面积是多少平方米?

  师:图中菜地由哪些简单图形组成的?计算每个简单图形的条件是多少?

  学生独立计算,集体订正。

  四、回顾整理,反思提升

  师:这节课你有什么收获?

  板书设计

  组合图形的面积

  分割法或添补法(转化):分解成简单图形。

  五年级上《组合图形面积》教学设计 篇7

  教学过程:

  一、认识组合图形。

  1、师生谈话导入:什么是组合图形?

  (1)出示火箭模型的平面图。观察一下,你有什么发现?

  (2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?

  (3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。

  2、在我们身边有不少物体表面的形状是组合图形。说一说,这些组合图形是由哪些图形组成的?

  3、学生自己试举例说明。

  二、计算组合图形的面积。

  1、揭示课题。

  (1)出示中队旗,计算它的面积。

  80cm

  20cm

  30cm

  30cm

  (2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。(出示课题:组合图形的面积)

  2、学生尝试。

  (1)学生讨论算法。

  (2)独立计算。鼓励用不同的做法。

  演板:

  (80-20+80)×30÷2 80×(30+30)-(30+30)×20÷2

  = 4200(平方厘米) = 4200(平方厘米)

  (80-20)×(80-20)+30×20÷2×2

  = 4200(平方厘米)

  (3)比较:哪种方法比较简便?

  2、小结:用哪些方法可以计算组合图形的面积?

  三、巩固练习。

  1、计算花坛的面积。

  让学生感受:不是任何分解都可以计算的,要根据条件进行分解。

  2、求火箭平面图的面积。

  3、选一个求字母“l”和“n”的面积。

  四、总结。

  你有什么感受?

  五、作业。(略)

  六、板书:

  组合图形的面积

  (80-20+80)×30÷2 80×(30+30)(80-20)×(80-20)

  = 4200(平方厘米) -(30+30)×20÷2 +30×20÷2×2

  = 4200(平方厘米) = 4200(平方厘米)

  课后反思:

  学生的经验和活动是他们学习空间图形的基础。他们对组合图形的认知是通过观察获得的,关于组合图形的面积计算又是建立在认知的基础上。因此本课的教学设计,是根据数学新课标的基本理念,铺设学习情境,让学生主动参与,灵活运用积累的经验解决问题,体现了数学学习是“经验”、“活动”、“思考”、“再创造”的特点。

  一、 导入——铺设学习情境。

  《数学课程标准》在课程实施建议中明确指出:“数学活动要紧密联系学生的生活实际,创设各种情境,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。”学生的学习,往往带着浓厚的感情色彩,在熟悉的情境中,他们就能够自觉地、顺利地参与到学习中来。在本节课中,先让学生观察火箭模型的平面图,让他们说说有什么发现,激活他们已有的知识经验,通过感受由几个简单图形的组合,揭示组合图形的含义。再让他们分析身边物体表面中的组合图形,把数学与生活紧密联系起来,激发学习的兴趣。

  二、尝试——开启创造之门。

  弗莱登塔尔认为,学生学习数学是一个有指导的再创造。数学学习的本质是学生的再创造。在本课的教学过程中,有意识的为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。课堂中采取了这样一些策略:设计富有挑战性的问题,激发学生主动思考和创造的愿望。为学生提供比较充足的探索与创造的时间、空间,让学生尽量释放创造的潜能。如:计算中队旗的面积时,要求学生先仔细观察这个图形,然后这样设问:“你能自己试着来解决这个问题吗?”学生经过自主的思考,能创造出不少的方法来计算组合图形的面积。课堂上学生在自身的`自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。还有一个学生在其他不同的方法后,又提出他独特的观点:把组合图形分成两个梯形,再把两个梯形拼成一个长方形来计算它的面积。他的想法恰恰运用了“出入相补”的原理。这正是知识、方法融会贯通的体现。

  “给我一个杠杆,我可以撬起地球”,我们还有什么理由不相信学生惊人的创造力呢?

  三、练习促进动态生成。

  让学生体会到数学的价值,力求人人学有价值的数学,以满足学生适应未来学习、生活的需要。在练习的设计中,我安排了这样三个层次:第一、只列式不计算。让学生明确求组合图形的面积,要根据数据进行分解,不是所有的分解都能进行计算的。第二、解决具体问题,计算火箭模型的平面图的面积。第三、解决实际问题,练习设计打破学科界限,让学生喊出英文单词“lion”,然后在英文乐曲中,选择计算“l”或“n”的面积。学生学得趣味

  五年级上《组合图形面积》教学设计 篇8

  教学内容:

  苏教版小学数学第十册第106页例10及练一练,练习十九第6—9题。

  教学设计构想:

  在《圆》这个单元的教学中,圆是从生活中引入,进而探讨圆的特征及各部分名称,和生活中为什么很多物体都是圆形的等等,使学生感知圆在生活中无处不在,圆是美丽的。再探讨了求圆的周长计算方法和求圆的面积计算的方法后,并将之运用到生活中解决了很多生活中的实际问题,使学生体会到数学来源于生活,高于生活,再回归到生活中能帮助我们去解决实际问题,提高学习能动性。

  《组合图形的面积》的设计理念依然是——由生活中的组合图形引入新课,进而回归到生活中去解决圆环形铁片的面积和窗户的面积以及光盘的面积。同时本节课的教学设计突出数学思想方法的渗透,让学生积极主动参与知识的形成过程,重视将解决问题的策略、技巧潜移默化的交给学生,让学生获得了数学思想方法,并培养了学生探索问题的能力。

  教材分析:

  本节课主要让学生利用已经掌握的圆的面积及其它图形面积公式计算组合图形面积。例题选择的素材是计算圆环铁片的面积。教材着重通过呈现解决问题的步骤引导学生掌握求圆环面积的基本思路。教材先让学生按步骤解答问题,然后启发学生联系学过的运算律探索简便计算方法。“试一试”和“练一练”中的组合图形都是由两个基本图形组合而成,计算这些组合图形的面积,有时需要计算两个基本图形的面积之差,有时需要计算两个基本图形的面积之和。

  学情分析:

  《组合图形的面积》是在学生认识了圆的特征、圆各部分名称、掌握了圆的周长计算和圆的面积计算方法的基础上,进行组合图形面积计算的教学的。

  教学目标:

  1、让学生结合具体情境认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。能正确计算简单的有关圆的组合图形的面积。

  2、通过操作、探索、发现、交流等活动,培养学生独立思考、合作创新意识和灵活运用知识解决问题的能力,进一步发展学生的空间观念和交流能力。

  3、在解决实际问题的过程中,提高学生对数学的好奇心和求知欲,感受数学的魅力,体会数学的应用价值。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  灵活地把组合图形转化为所学过的基本图形,正确计算。

  教学准备:

  PPT课件,圆规、硬纸、剪刀(学生也准备)

  教学过程:

  一、复习导入

  1、师:前面学习了圆的面积计算,说说圆面积的计算公式?(板书)回顾一下我们还学习了哪些平面图形面积的计算公式?(板书)

  2、引入新课:生活中我们不但能看到圆形的物体,还常常会看到由圆和其他图形组成的图形(出示课件),像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)组合图形在日常生活中有着广泛的应用,认识了生活中的组合图形,这节课我们将利用已有的知识一起来研究有关组合图形面积的计算(出示课题)。

  [设计意图:在复习所学的基本图形面积计算的基础上,通过生活中的组合图形引入新课,使学在头脑中对组合图形产生感性的认识。为下面学习求组合图形的面积打下基础。]

  二、探索新知

  1、认识圆环

  (1)出示圆环形铁片(课件)

  问:知道这个铁片是什么图形吗?仔细观察:圆环有些什么特征呢,谁来向大家介绍一下(生介绍圆环)

  师对学生的回答给与评价。明确:圆环是两个圆心相同、半径不相等的圆形所组成的宽度相等的图形。

  (2)联系生活

  同学们想一想:生活中哪些地方还有圆环?

  2、做圆环

  (1)谈话:我们认识了圆环,现在你能用准备好的材料动手做一个圆环吗?

  指名学生展示自己做的圆环,并向大家介绍做圆环的方法。

  (2)师拿出自己做的圆环并小结做圆环的方法。

  请生指出圆环的面积是哪部分。

  [设计意图:学生在认识了圆环的基础上,引导学生找生活中的圆环,并动手做出圆环,由具体的实物抽象出几何图形,不但让学生经历知识的形成过程,使学生能直观地发现、理解并掌握圆环面积计算方法,而且对数学知识与生活的紧密联系有了一定的认识。]

  3、学习例10

  (1)在圆环形铁片图的右边出示例10(课件)

  请生读题,你获得了哪些信息?

  问:求这个铁片的面积,就是求什么形状的面积?

  师:会求这个铁片的面积吗?(生尝试做)指名板演,师巡视,发现有用简便做法的请上台板演(如果没有用简便方法做的,在第一种方法反馈之后,可启发学生有简便做法吗?)。

  同桌交流求面积的方法。

  (2)反馈第一种基本方法,请板演学生当小老师,说说自己的解题思路。

  板书:外圆面积—内圆面积=圆环面积。

  反馈第二种方法,请板演学生说说你是怎样想的.?

  两种方法有什么联系?(运用乘法分配律)

  (3)师生共同小结:计算圆环面积的基本方法是从外圆面积中减去内圆面积,还可以进行简便计算。如果用R表示外圆半径,用r表示内圆半径,那么,求圆环面积的计算公式就是:S=πR2 —πr2或S=π(R2—r2)(板书)

  [设计意图:让学生经历圆环面积的简便算法的形成过程,鼓励学生用不同的方法进行计算,并引导学生发现简便方法,体现两种方法之间的内在联系。]

  4、对比,归纳方法

  出示大小两圆拼成的新图形,与圆环图进行对比(课件),请学生说说这两题的联系与区别。归纳此类组合图形面积的计算方法(求面积之差)。

  5、尝试“试一试”(出示课件)

  (1)出示“试一试”,学生小组讨论:

  窗户的形状是由哪些基本图形组合而成的?

  要求窗户的面积就是求什么?

  半圆和正方形有什么相关联的地方?

  半圆面积该怎样求?

  (2)再全班交流。

  (3)学生尝试列式计算,指名板演。

  (4)反馈,明确:正方形的边长就是半圆的直径。交流解题方法,重点强调半圆面积必须是用整圆的面积除以2(别忘了除以2)。

  5、观察比较,小结方法

  (1)讨论:例题中的圆环和“试一试”中的窗户,两题中的图形

  都属于组合图形,两个图形的组合方式有什么不同的地方?窗户和圆环在求面积上有什么不同?你发现他们在解决问题的思路有什么相同的地方?有什么不同的地方?

  (2)组织全班交流。(圆环是大圆里挖去小圆,窗户是半圆形和正方形两个图形拼加。求圆环面积是大圆面积减去小圆面积,求窗户面积是半圆形面积加上正方形面积。解题思路相同之处都是要先算出组合图形中的基本图形的面积,不同之处是一个是基本图形的面积相减,一个是基本图形的面积相加。)

  (3)小结归纳组合图形面积计算基本方法。

  师:圆、半圆或其它基本的平面图形组合在一起,产生组合图形,在计算组合图形面积的时候,先看清这个组合图形是由哪些基本图形组成的,再根据组合方式决定把基本图形的面积相加还是基本图形的面积相减。

  [设计意图:引导学生充分讨论交流,根据讨论的结果,总结求组合图形的方法,注重将解决问题的策略、技巧潜移默化的交给学生,让每个学生都参与到数学活动中来。]

  三、运用巩固

  1、基本练习:练一练(课件出示)

  思考:(1)下面的组合图形的需要计算哪些基本图形的面积?

  (2)涂色部分面积怎样求?

  (3)左图,两个基本图形有什么联系?右图呢?

  学生先同位交流,再全班交流,(明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。)然后每人各选一题列式计算。

  2、综合拓展练习:练习十九第6题(课件出示)

  (1) 计算下面组合图形涂色部分的面积各需要需要哪些条件?

  (2) 涂色部分面积怎样求?

  学生先同位交流,再全班交流:说说计算需要测量哪些数据,再交流算法。

  3、眼力大比拼:三个正方形涂色部分的面积相等吗?为什么?(练习十九第7题课件出示)

  指名学生根据图形作出直观的判断,并说说判断的方法。

  四、总结交流

  今天我们一起学习了什么知识?你有哪些收获?在求组合图形的面积时一般需要注意什么?有什么宝贵的解题经验想和大家分享?

  五、实践延伸

  出示光盘,同学们你能想办法算出(自己家里的)光盘的面积吗?课后完成。

  [设计意图:练习设计体现了针对性、层次性、综合性和实践性。最后的课外延伸环节,让学生计算自己熟悉的光盘的面积,可以提高学生运用数学知识解决实际问题的能力,感受到数学在生活中的应用价值和数学的魅力所在。]

  附:板书设计

  组合图形面积

  基本图形的面积相加或相减

  例:外圆面积—内圆面积=圆环面积。

  S=πR2 —πr2

  S=π(R2—r2)

  五年级上《组合图形面积》教学设计 篇9

  教材分析:

  《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

  教学目标:

  知识目标

  1、在自主探索的活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中有关组合图形的实际问题。

  过程和方法

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  情感、态度与价值观

  1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  2、渗透转化的数学思想和方法。

  教学重点:

  学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

  教学难点:

  理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

  教学准备:

  多媒体课件和组合图形图片。

  教学过程:

  一、激趣导入、复习铺垫、认识组合图形

  1、介绍笑笑和她家的新房子

  师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)

  2、引导学生观察,复习有关平面图形面积的计算公式

  师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?

  3、欣赏图片(课件出示一组图片)

  师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)

  4、教师总结,揭示课题并板书

  师:说得真好!像这样由两个或两个以上的简单的.图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)

  二、创设情境、探究新知

  笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)

  1、估计地板的面积

  请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)

  2、采用不同的方法求客厅的面积。

  同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

  (1)生动手画图

  (2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

  3、师生归纳方法并比较

  (1)观察找特点

  根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

  (2)引导比较,对方法进行分类,找出最简单的方法

  师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)

  (3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)

  (4)学生独立计算,四人板演。

  (5)汇报交流,集体订正。

  (6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)

  4、归纳算法

  刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

  师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三、实际应用、解决问题

  1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)

  (1)学生拿出先准备好的图形,动手画

  (2)展示交流

  2、计算墙壁的面积

  观察图形选择方法独立计算汇报交流

  同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?

  观察图形选择方法独立计算汇报交流

  3、求门油漆的面积。

  师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)

  (1)需要油漆的面积一共是多少?

  (2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

  四、归纳小结、提升知识

  这节课你学会了什么?

  (师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)

  五、拓展延伸

  师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。

  1.6m 4 m 10

  板书设计:

  组合图形面积

  S=ab 分割

  S=aa S=ah 转化

  基本图形

  S=ah2 S=(a+b)2 添补

  五年级上《组合图形面积》教学设计 篇10

  教学目标

  1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。

  2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。

  教学重点

  能根据条件求组合图形的面积。

  教学难点

  理解分解图形时简单图形的差较难分解。

  教具、学具

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、试一试

  教师引导学生读题,理解题意。

  二、练一练第1题

  1、请学生任意分割,后说说分割的是什么已经学过的图形

  2、老师要求再分割

  3、想一想出了分割还有没有其他方法。

  这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。

  学生自己进行分割,

  再分割为最少的.学过的图形,比一比谁分的最少,而且还是我们学过的图形。

  适当地添上相关的条件进行分割,要求分割的合理,能够计算。

  培养学生的空间分析能力。

  通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、练一练第3题

  学生看书上的图。教师读题,

  要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?

  四、作业

  完成练一练的第2题。

  理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。

  除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。

  独立完成练习。

  学生能正确进行组合图形的实际运用。

  再进行组合图形的面积。

  书设计: 图形的面积

【五年级上《组合图形面积》教学设计】相关文章:

组合图形的面积教学设计01-15

《组合图形的面积》教学设计11-09

组合图形的面积教学设计03-08

《组合图形面积》教学设计05-12

组合图形面积的教学设计02-09

组合图形面积的教学设计02-09

组合图形的面积教学设计04-06

五年级上《组合图形面积》教学设计03-20

五年级上《组合图形面积》教学设计(精选11篇)12-02

《组合图形的面积》教学设计15篇05-31