函数的图象教学设计

时间:2021-06-24 12:13:25 教学设计 我要投稿

有关函数的图象教学设计

  作为一位优秀的人民教师,总不可避免地需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么写教学设计需要注意哪些问题呢?以下是小编精心整理的有关函数的图象教学设计,希望能够帮助到大家。

有关函数的图象教学设计

  函数的图象教学设计1

  教学目标

  (一)知道函数图象的意义;

  (二)能画出简单函数的图象,会列表、描点、连线;

  (三)能从图象上由自变量的值求出对应的函数的近似值。

  教学重点和难点

  重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

  难点:对已恬图象能读图、识图,从图象解释函数变化关系。

  教学过程设计

  (一)复习

  1.什么叫函数?

  2.什么叫平面直角坐标系?

  3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

  4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

  5.请在坐标平面内画出A点。

  6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

  (二)新课

  我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

  这个函数关系中,y与x的函数。

  这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

  课堂教学设计说明

  1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

  2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

  3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

  4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

  5.作业中的第1-3题,对训练函数图象很有帮助。

  第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

  第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。

  第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

  函数的图象教学设计2

  教学目标

  知识与技能:

  1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

  2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

  3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

  过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

  情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

  教学重点

  教学难点

  1)重点:画反比例函数图象并认识图象的特点.

  2)难点:画反比例函数图象.

  教学关键教师画图中要规范,为学生树立一个可以学习的模板

  教学方法激发诱导,探索交流,讲练结合三位一体的教学方式

  教学手段教师画图,学生模仿

  教具三角板,小黑板

  学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法

  教学过程

  (包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

  内容设计意图

  一:课前检测:

  1.什么叫做反比例函数;

  (一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。)

  2.反比例函数的定义中需要注意什么?

  (1)k为常数,k0

  (2)从y=中可知x作为分母,所以x不能为零.

  二:激发兴趣导入新课

  问题1:对于一次函数y=kx+b(k0)的图象与性质,我们是如何研究的?

  y=kx+by=kx

  K0一、二、三一、三

  b0一、三、四

  K0一、二、四二、四

  b0二、三、四

  问题2:对于反比例函数y=k/x(k是常数,k0),我们能否象一次函数那样进行研究呢?

  可以

  问题3:画图象的步骤有哪些呢?

  (1)列表

  (2)描点

  (3)连线

  (教学片断:

  师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

  生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

  生:我知道反比例函数的解析式为且k不等于0

  生:我知道反比例函数的图象是曲线。

  师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

  生:该研究反比例函数图象和性质了。

  师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

  三:探求新知

  学生思考、交流、回答。

  提问:你能画出的图象吗?

  学生动手画图,相互观摩。

  (1)列表(取值的特殊与有效性)

  x-8-4-2-1-1/21/21248

  (2)描点(描点的准确)

  (3)连线(注意光滑曲线)

  议一议

  (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

  (2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

  (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

  (4)曲线的.发展趋势如何?

  曲线无限接近坐标轴但不与坐标轴相交

  学生先分四人小组进行讨论,而后小组汇报

  做一做

  作反比例函数的图象。

  学生动手画图,相互观摩。

  想一想

  观察和的图象,它们有什么相同点和不同点?

  学生小组讨论,弄清上述两个图象的异同点

  相同点:

  (1)图象分别都是由两支曲线组成

  (2)都不与坐标轴相交

  (3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

  不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

  四:归纳与概括

  反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。

  (1)当k0时,两支曲线分别位于第___、___象限,

  (2)当k0时,两支曲线分别位于第___、___象限.

  五:课堂练习

  (1)

  (2)反比例函数的图象是________,过点(,____),其图象分布在___象限;

  六:形成性检测

  (1)已知函数的图象分布在第二、四象限内,则的取值范围是_________

  (2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的()

  (A)(B)(C)(D)

  (3)画和的图象

  七:反馈拓展

  在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.

  八:作业布置

  (1)作反比例函数y=2/x,y=4/x,y=6/x的图象

  (2)习题5.2.1

  (3)预习下一节反比例函数的图象与性质II

  复习上节主要内容

  (3分钟)

  (5分钟)

  运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

  由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

  数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

  数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

  (12分钟)

  引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.

  在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

  注:(1)x取绝对值相等符号相反的数值

  (2)x取值要尽可能多,而且有代表性

  (3)连线时用光滑曲线从小到大依次连接

  (4)图象不与坐标轴相交

  在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

  (3分钟)

  此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

  (5分钟)

  活动效果及注意事项学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线

  (4分钟)

  培养学生归纳,语言表达能力

  此中注意分类讨论思想的应用

  巩固反比例函数图象性质

  (2分钟)

  与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

  (5分钟)

  这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

  (4分钟)

  此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

  (1分钟)

  巩固作反比例函数图象的步骤,预习下一节课内容

  教学反思与检讨:

  本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

  由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

  在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

  反比例函数的图象与性质

  一:画出的图象

  (1)列表(取值的特殊与有效性)

  x-8-4-2-1-1/21/21248

  (2)描点(描点的准确)

  (3)连线(注意光滑曲线)

  注:(1)x取绝对值相等符号相反的数值

  (2)x取值要尽可能多,而且有代表性三:练习

  (3)连线时用光滑曲线从小到大依次连接

  (4)图象不与坐标轴相交

  二:反比例函数的图象y=是由两支曲线组成的。

  (1)当k0时,两支曲线分别位于第一、三象限,

  (2)当k0时,两支曲线分别位于第二、四象限.

【有关函数的图象教学设计】相关文章:

一次函数图象的应用说课稿11-02

《称象》教学设计课件04-20

波动图象与振动图象的综合应用练习题05-29

《与象共舞》教学设计15篇01-02

一次函数的教学设计课件02-17

《与象共舞》教学设计(汇编15篇)01-01

最后一头战象教学设计12-21

三角函数优秀的教学设计模板12-27

三角函数优秀教学设计范文12-28

称象说课设计11-12