六年级《正比例》的教学设计

时间:2024-12-26 10:10:01 玉华 教学设计 我要投稿

苏教版六年级《正比例》的教学设计(精选15篇)

  作为一位优秀的人民教师,常常要写一份优秀的教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么问题来了,教学设计应该怎么写?以下是小编精心整理的苏教版六年级《正比例》的教学设计,希望能够帮助到大家。

苏教版六年级《正比例》的教学设计(精选15篇)

  六年级《正比例》的教学设计 1

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的`值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

  六年级《正比例》的教学设计 2

  【教学内容】

  正比例

  【教学目标】

  使学生理解正比例的意义,会正确判断成正比例的量。

  【重点难点】

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。

  【教学准备】

  投影仪。

  【复习导入】

  1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率?

  板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  【新课讲授】

  1. 教学例1。

  教师用投影仪出示例1的图和表格。

  学生观察上表并讨论问题。

  (1)铅笔的`总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。

  ②数量增加,总价也增加;数量降低,总价也减少。

  ③铅笔的总价和数量的比值总是一定的,即单价一定。

  教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

  教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  3.归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三:两个量的比值一定。

  4.用字母表示正比例的关系。

  教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

  5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  【课堂作业】

  完成教材第46页的“做一做”(1)~(3)。

  答案:

  (1) 。

  (2)比值表示每小时行驶多少km。

  (3)成正比例。理由:路程随着时间的变化而变化。

  ①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。

  【课堂小结】

  通过这节课的学习,你有什么收获?

  【课后作业】

  完成练习册中本课时的练习。

  六年级《正比例》的教学设计 3

  教学要求:

  1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学过程:

  一、复习铺垫

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、引入新课

  我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

  二、教学新课

  1、教学例1。

  出示例1。让学生计算,在课本上填表。

  让学生观察表里两种量变化的数据,思考。

  (1)表里有哪两种数量,这两种数量是怎样变化的?

  (2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

  引导学生进行讨论。

  提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

  想一想,这个式子表示的是什么意思?

  2、教学例2

  出示例2和想一想

  要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

  学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

  比值1.6是什么数量,你能用数量关系式表示出来吗?

  谁来说说这个式子表示的意思?

  3、概括正比例的意义。

  像例1、例2里这样的两种相关联的量是怎样的'关系呢?请同学样看课本第40页最后一节。

  4、具体认识

  (1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

  例2里的两种量是不是成正比例的量?为什么?

  (2)做练习八第1题。

  5、教学例3

  出示例3,让学生思考/

  提问:怎样判断是不是成正比例?

  请同学们看一看例3,书上怎样判断的,我们说得对不对。

  强调:关键是列出关系式,看是不是比值一定。

  三、巩固练习

  1、做练一练第1题。

  指名学生口答,说明理由。

  2、做练一练第2题。

  指名口答,并要求说明理由。

  3、做练习八第2题(小黑板)

  让学生把成正比例关系的先勾出来。

  指名口答,选择几题让学生说一说怎样想的?

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

  五、家庭作业。

  六年级《正比例》的教学设计 4

  教学目标

  1.使学生理解正比例的意义.

  2.能根据正比例的意义判断两种量是不是成正比例.

  3.培养学生的抽象概括能力和分析判断能力.

  教学重点

  使学生理解正比例的意义.

  教学难点

  引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的`数的比值一定,从而概括出正比例关系的概念.

  教学过程

  一、复习准备

  口答(课件演示:成正比例的量)

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、新授教学

  (一)导入新课

  这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

  (二)教学例1.(课件演示:成正比例的量)

  1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

  2.出示下表,并根据上述内容填表.

  六年级《正比例》的教学设计 5

  教学目标:

  1、初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

  教学重点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点:

  会根据正比例的意义判断两种相关联的量是不是成正比例。

  预习指导:

  一、自学教材。

  阅读教材第62~63页。

  二、检查学习。

  1、怎样两个量成正比例?

  2、完成"试一试"。

  教学准备:

  课件和口算题。

  教学过程:

  一、导入

  谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1

  1、课件出示例1的表

  (1)看一看,表中有哪两种量?这两种量的数值是怎样变化的?

  (2)表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

  2、那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

  3、我们可以写出这么几组路程和对应时间的比。

  (1)发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

  (2)这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

  (3)同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  课件出示:路程和时间成正比例。

  (4)现在你能完整地说一说表中路程和时间成什么关系吗?

  4、刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目。

  (1)课件出示"试一试"

  (2)请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

  课件出示表中的数据。

  (3)从表中我们可以看出铅笔的总价是随着购买数量的.变化而变化的。

  集体交流:

  (4)我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

  (5)再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

  小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

  (6)你能完整地这样说给你的同桌听一听吗?

  (7)同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

  课件出示课题。

  (8)回顾一下,我们是根据什么来判断两种数量能成正比例的?

  指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

  5、完成"练一练"

  (1)请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

  (2)生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

  小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

  三、练习

  1、完成练习十三第1题。

  请大家继续看课本66页第1题

  2、完成练习十三第2题

  (1)继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

  (2)同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

  3、完成练习十三第3题(课件出示题目)

  (1)课件出示放大后的三个正方形、

  (2)大家看一看,你是这样画的吗?

  (3)接着请同学们对照表格计算出放大后每个正方形的周长和面积。

  校对学生做的情况。

  (4)请大家根据表中的数据讨论下面两个问题。

  ①正方形的周长与边长成正比例吗?为什么?

  ②正方形的面积与边长成正比例吗?为什么?

  四、总结。

  通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

  板书设计:

  正比例的意义

  路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  六年级《正比例》的教学设计 6

  教学目的:

  1、使学生通过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。

  2、引导学生通过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。

  教具、学具准备:

  教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。

  教学过程:

  一、复习准备

  1、什么是比例?

  2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。

  时间(时)27

  路程(千米)180630

  二、导入新课

  教师:在上面的表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。

  三、进行新课

  用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。

  时间(时)

  路程(千米)

  教师:先独立思考后再讨论、交流、回答以下问题

  (1)表中有哪两种量?

  (2)这两种量是怎样变化的?

  (3)还能够从表中发现哪些规律?

  教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。

  板书:相关联。

  教师:你们还发现哪些规律呢?

  引导学生归纳出:

  (1)时间和路程是相关联的`两种量,路程随着时间的变化而变化;

  (2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;

  (3)路程和时间的比值都是90;时间和路程的比值都是1/90。

  路程和时间的比值是什么?(速度)

  在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)

  数量(米)1234567…

  总价(元)8.216.424.632.841.049.257.4…

  先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。

  学生分析后引导学生归纳:

  (1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;

  (2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;

  (3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。

  教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。

  教师:请同学们相互说一说生活中还有哪些是成正比例的量?

  指导学生完成第56页“做一做”。

  四、巩固练习

  指导学生完成练习十六第1~3题。

  五、课堂小结

  教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

  学生小结后教师对全课所学的知识进行归纳。

  创意作业

  小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。

  六年级《正比例》的教学设计 7

  学情分析

  正比例数是学生第第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,为后面学习一次函数打下基础,根据学生基础和知识层次制定不同的要求,提倡同伴间互相合作,充分遵循学生的认知规律,教学中注意由易到难、循序渐进,让每个学生获得成功的喜悦。

  教学目标

  知识与技能:能作正比例函数的图象,能掌握、运用正比例函数的性质;过程与方法:通过作正比例函数图象的过程,发展学生的观察、概括、归纳的能力,感知数形结合的数学思想;情感态度与价值观:通过描点作图题培养学生认真的学习习惯。

  教学重点:

  正比例函数的图象特征和性质。教学难点:正比例函数的图象特征和性质的概括和归纳。

  教学过程:

  一、回顾旧知、提出问题

  问题1昨天我们初步学习了正比例函数,你能写出两个具体的正比例函数解析式吗?什么叫正比例函数?(学生随便写出两个正比例函数解析式,如y=2x、y=-2x等。回顾正比例函数概念,开放性地先让学生写出几个简单的正比例函数解析式,既是为了帮助学生回顾正比例函数的概念,也是为了后面研究函数性质提供画图象的具体函数。)

  问题2函数都有哪几种表示方法?(教师引导学生说出表格法和图像法。为激发学生学习本节课的兴趣做好铺垫。)

  问题3针对函数y=kx(k≠0),大家还想研究什么?应该怎样研究?(教师引导学生自然合理地提出要研究的问题――研究函数图象,研究步骤:列表、描点、连线。通过回顾,引导学生自然合理地提出正比例函数图象的研究任务和研究方法。)

  二、合作交流,探究k>0的函数性质

  问题4让我们从具体的正比例函数y=2x的图象研究开始,画图象怎样画?

  (在学生说出画图象的步骤后,教师ppt演示。学生对刚接触画图象,为避免学生因在列表、连线等细节上出现错误,教师示范,为后续学生独立作图提高准确性。)

  追问1:看一看,画出的图象是什么?追问2:其他的正比例函数图象也是一条直线吗?请三人小组分工,分别取k为1、3、4,每人在练习纸上画一幅正比例函数图象。(类比y=2x的图象画法,做出函数图象。让学生画图象,观察、发现图象可能是直线。)

  问题5请组内讨论交流,你们的`图象有什么共同点?(教师深入组内倾听学生的发言,发现学生的盲点和误区,给予指导。实物投影展示组内的三幅图象,各组互相补充发言,引导学生逐步完善共同点,得出k>0的正比例函数性质,是一条经过原点的直线,经过一三象限,从左到右直线上升,y随x的增大而增大。互相合作,共同进步,注重因材施教,充分遵循学生的认知规律,从而逐步突破本节难点。)

  问题6同学们通过合作学习,已经找到了k>0时的正比例函数性质了,同学们还想探究什么?追问1:怎么探究?(引导学生类比学习,组内分工,分别取k为-1、-3、-4,每人在练习纸上画一幅正比例函数图象,寻找共同点,得出k

  三、初步应用,巩固新知

  1.在平面直角坐标系中,正比例函数y=kx(k

  2.对于正比例函数y=kx,当x增大时,y随x的增大而增大,则k的取值范围()

  A.k0 D.k≥0

  3.点(2,y1),(4,y2)为y=-3x图象上的两点,请比较y1、y2的大小。(引导学生说出三种做法,提高学生对性质灵活运用的能力)

  四、综合应用,深化理解

  1.同学们刚才都找了组内图象的共同点,再看看这些直线有什么不同点吗?追问1:看看直线的倾斜程度与什么有关?有什么变化规律?组内讨论交流。(引导学生说出直线的倾斜程度不同,发现k的绝对值越大,直线的倾斜程度越小,动画演示。乘胜追击,适时拔高本节内容,让同学们再进行一次攀登,培养学生多角度的观察、比较能力。)

  追问2:你还有什么发现吗?(引导有能力的学生得出,当k互为相反数时,两个函数图象分别关于x、y轴对称。为能力较强的同学提供一个更高的高度。)

  2.我们知道y=2x的图象是一条经过坐标原点的直线,你有画这幅函数图象的简便画法了吗?正比例函数y=kx(k=0)的图象是____,它一定经过(0,)和(1,)点。你如何画下列函数图象(1)y=x(2)y=-0.5x。

  五、小结

  参照下面问题,教师引导学生回顾本节课所学的主要内容,通过相互交流分享观点:(1)正比例函数的图象是什么?怎样用简便方法画正比例函数图象?(2)正比例函数有哪些性质?(3)我们是怎样对正比例函数的性质进行研究的?

  教师在学生交流的基础上概况。正比例函数解析式:y=kx(k是常数,k≠0)图象:一条经过原点和(1,k)的直线;性质:①当k>0时,直线y=kx经过第一、三象限;当k0时,从左向右上升,即随x的增大y而增大;当k

  六年级《正比例》的教学设计 8

  教学目标:

  1、掌握用正比例的方法解答相关应用题。

  2、通过解答应用题使学生熟练地决定两种相关联的量是否成正比例,从而加深对正比例好处的理解

  3、培养学生分析问题、解决问题的潜力。

  教学重点:

  掌握用正比例的方法解答应用题

  教学难点:

  能正确决定两种相关联的量成什么比例,正确列出比例式。

  教学过程:

  一、激趣导入

  1、在上新课之前,先考考大家对保亭县的认识。你明白保亭县最高的建筑物是什么?它位于何处?

  2、对于保亭县最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

  刚才同学们想出了很多的方法去测量电视塔的大概高度。这天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算电视塔的大概高度。看谁学得最棒。

  二、自学互动

  先来研究这样一个问题。

  1、出示例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  2、分析解答应用题

  (1)请一位同学读一读题目

  (2)这道题要求什么?已知什么条件?

  (3)能不能用以前学过的方法解答?

  (4)小组合作学习交流,边汇报边板书

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、适时点拨

  这两种方法都合理,还能够有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

  三、探讨新知

  1、提出问题

  师:请同学们结合课本上的例题,讨论以下问题。

  (1)题目中相关联的两种量是________和________。

  (2)________必定,_________和_________成_______比例联系。

  (3)______行驶的_____和_____的________相等。

  2、学生自学例题后小组讨论。

  3、组间交流:小组代表把讨论结果在班内交流

  4、学生尝试解答后评价(指名学生板演)

  5、怎样检验?把检验过程写出来。

  6、概括总结

  (1)用比例解答应用题与用算术方法解答应用题的解法不同,但计算结果相同,如果题目中没有要求的,我们采取任何一种方法都能够,但如果题目要求用比例解的,就必定要用比例的方法解。

  (2)明确解题步骤。(板)

  用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

  1.分析决定

  2.找出列比例式所需的相等联系

  3.设未知数列等式

  4.求解

  5.检验写答语

  四、测评训练

  1、基本练习

  (1)例题改编

  ①如果把这道题的.第三个和问题改成:“已知公路长400千米,需要行驶多少小时?”该怎样解答?

  ②让学生解答改编后的应用题,群众订正。

  ③小结:比较一下改编后的题和例1有什么联系和区别?

  改编例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法没有改变,只是要设需要行驶的小时数为x,列出的等式是:

  140/2=400/x

  (2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

  五、总结全课

  同学们,你们这天学到了什么?有什么收获呢

  六年级《正比例》的教学设计 9

  教材分析:

  正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。

  学情分析:

  学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。

  教学目标:

  1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。

  2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学重点:

  1、结合丰富的事例,认识正比例,理解正比例的好处。

  2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学用具:

  课件

  教学过程:

  一、在情境中感受两种相关联的量之间的变化规律。

  (一)情境一

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (二)情境二

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  (三)情境三

  1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的'周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  (四)归纳正比例的好处

  1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  2、购买苹果应付的钱数与质量有什么关系?

  3、正方形的周长与边长有什么关系?

  4、观察思考成正比例的量有什么特征?

  一个量变化,另一个量也随着变化,并且这两个量的比值相同。

  5、小结

  两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。

  二、巩固练习

  1、想一想

  正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化状况如下

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再群众汇报

  三、全课总结:

  说说你在这节课中学到了什么知识?有什么不明白的地方?

  板书设计:

  正比例

  路程÷时间=速度(必须)

  总价÷数量=单价(必须)

  正方形的周长÷边长=4(必须)

  两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。

  六年级《正比例》的教学设计 10

  一、教学目标

  (1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。

  (2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;

  (3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。

  二、教学的重点和难点

  教学重点:正比例函数的性质及其应用。

  教学难点:发现正比例函数的性质

  三、教学方法与学法指导教学方法:

  引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。

  学法指导:引导学生学会观察、归纳的学习方法。

  四、教具准备

  电脑PPT,洋葱学院电脑版

  五、教学过程:

  (一)温故知新,引入课题

  温故:正比例函数的图像是什么?

  答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线

  (二):知新:

  在两个直角坐标系内,分别画出下列每组函数的图象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x

  引导学生观察图像,看看每组直线分布的特征先让学生在坐标纸上画出上述函数的图象,之后利用洋葱学院播放《正比例函数的性质》,以动态的演示画出函数图象,吸引学生的学习兴趣,让他们能查漏补缺,找出自己所画的图象与视频中的图象有什么不同?

  观察图像,思考问题:

  1.图像经过的象限与k的取值有何联系?不够明确。图像经过的象限与k的取值(特别是符号)有何联系?

  2.对其中的某一个正比例函数图像(例如y=3x),当x增大时,函数值y怎样变化?x减小呢?是不是要提出减小?请斟酌。

  3.你从中得出什么规律?

  第一个问题:图像经过的`象限与k的取值有何联系?

  估计生:发现第一组的五条直线都经过第一象限和第三象限;而第二组的五条直线都经过第二和第四象限。

  师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致

  估计生:第一组k>0,而第二组k<0。

  师:很好,谁能把他们联系一下?

  估计生:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

  师:那么是不是对于所有的正比例函数的图像都有:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k的值都小于零的。】(这个演示过程可以登录xx这个网址,进行演示,让学生更加直观的观察到k的正负对函数图象的影响)

  下面由老师来证明这个性质:(由观察猜想到逻辑证明)

  板书:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

  证明:当k>0时,若x>0,则kx>0,即y>0∴点(x,y)在第一象限

  若x<0,则kx<0,即y<0∴点(x,y)在第三象限

  当x=0时,则kx=0,即y=0∴点(x,y)即原点。

  即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。同理,当k<0时,亦可证明函数图像经过二、四象限。

  我们看到:当k>0时,函数图像的走向很像汉字笔画里的“提”,当k<0时,走向是“捺”。这样更形象,容易记忆。

  PPT展示正比例函数的性质:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

  师:现在我们做个小练习,由正比例函数解析式(根据k的正负),来判断其函数图像的走向。

  y=-xy=xy=xy=-xy=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)

  鼓励学生踊跃抢答。

  反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x增大时,函数值y怎样变化?x减小呢?)播放洋葱视频。

  板书:当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;(即“提”的走向)当k<0时,自变量x逐渐增大时,函数值y反而减小。(即“捺”的走向)

  师:小练习:由函数解析式,请你说出它的变化情况:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)

  鼓励学生踊跃抢答。

  第三个问题:你从中得出什么规律?

  归纳总结(由学生回答)正比例函数y=kx(k≠0)的性质:

  当k>0时,函数图像经过第一、三象限;自变量x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)

  当k<0时,函数图像经过第二、四象限;自变量x逐渐增大时,函数值y反而减小。(也就是“捺”的走向)

  归纳为一句话,正比例函数图象的性质归根结底看k的符号。

  即:k>0提(一、三,增大);

  k<0捺(二、四,减小)

  (三)应用

  1、正比例函数的解析式是___________,它的图像一定经过___________。

  2、y=-的图像经过第___________象限。

  3、已知ab<0,则函数y=x的图象经过___________象限。

  4、已知正比例函数y=(2a+1)x,若y的值随x的增大而减小,求a的取值范围。

  5、当m为何值时,y=mxm2-3是正比例函数,且y随x的增大而增大。

  思考题:

  ①已知正比例函数y=(m+1)xm2+1,那么它的图象经过哪些象限。

  ②分别说明下列各正比例函数,当m为何值时,y随x的增大而增大,或y随x的增大而减小?

  a、y=(m2+1)x

  b、y=m2x

  c、y=(m+1)x

  (四)小结这节课让我们知道了……

  以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络(先播放视频,之后PPT总结本节课的重点)。

  (五)作业89页练习题

  (六)课后反思

  1.成功之处:本节课的重点是正比例函数的性质及其应用。难点是发现正比例函数的性质,通过教师的引导,洋葱视频的引导,启发调动学生的积极性,让学生自主的去分析发现函数的性质。教师的主导作用与学生主体地位达到了统一。使本节课的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生利用数形结合的思想方法解决问题的能力;本节课的教学注重由传授单一的知识技能,转向为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握。

  2.不足之处:

  (1)在探索正比例函数性质时,没有预估到学生画函数图象费时太长,导致后面的教学过程比较紧张。

  (2)在应用新知这一环节中对学生习题的反馈情况了解的不够全面。

  (3)为激发学生自主学习的兴趣,教师的课堂语言应精炼。

  3、改进措施:

  (1)要充分的相信学生总结规律的能力。在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题。

  (2)在学生明确正比例函数的性质后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确的掌握学生对新知识的掌握情况。

  (3)在性质的发现总结过程中,应让学生自己独立完成,教师不必着急帮助总结,这样可以更加集中学生的注意力,激发学习兴趣。

  在实际教学中为了体现学生学习的主体性,和教师教学的主导性,我花费了很多时间在学生的动手操作、小组讨论上,但如何能更好的处理好学生探索过程中的引导和讲解,还需要在实际教学中不断地反思才能不断地进步。

  六年级《正比例》的教学设计 11

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:认识正比例的意义

  教学难点:掌握成正比例量的变化规律及其特征

  设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的.数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

  一、复习铺垫激情促思

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、初步感知探究规律

  1、出示例1的表格(略)

  说说表中列出了哪两种量。

  (1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

  (2)引导学生观察表中数据,寻找两种量的变化规律。

  根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

  根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

  根据学生的回答,板书关系式:路程/时间=速度(一定)

  (3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

  (板书:路程和时间成正比例)

  2、教学“试一试”

  学生填表后观察表中数据,依次讨论表下的4个问题。

  根据学生的讨论发言,作适当的板书

  3、抽象表达正比例的意义

  引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:=k(一定)

  揭示板书课题。

  先观察思考,再同桌说说

  大组讨论、交流

  学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

  学生根据板书完整地说一说表中路程和时间成什么关系

  学生独立填表

  完整说说铅笔的总价和数量成什么关系

  学生概括

  三、巩固应用深化规律

  1、练一练

  生产零件的数量和时间成正比例吗?为什么?

  2、练习十三第1题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第2题

  先独立判断,再有条理地说明判断的理由。

  4、练习十三第3题

  先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

  分别求出每个图形的周长和面积,并填写表格。

  讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

  讨论、交流

  独立完成,集体评讲

  说明判断的理由

  说一说,画一画

  填一填,议一议

  讨论

  四、总结回顾评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

  六年级《正比例》的教学设计 12

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的.关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

  六年级《正比例》的教学设计 13

  教学目标

  (一)教学知识点

  1.认识正比例函数的意义.

  2.掌握正比例函数解析式特点.

  3.理解正比例函数图象性质及特点.

  4.能利用所学知识解决相关实际问题.

  教学重点

  1.理解正比例函数意义及解析式特点.

  2.掌握正比例函数图象的性质特点.

  3.能根据要求完成转化,解决问题.

  教学难点

  正比例函数图象性质特点的掌握.

  教学过程

  Ⅰ.提出问题,创设情境

  一九九六年,鸟类研究者在芬兰给一只燕鸥?鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.

  1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?

  2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

  3.这只燕鸥飞行1个半月的行程大约是多少千米?

  我们来共同分析:

  一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:

  ÷(30×4+7)≈200(km)

  若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:

  y=200x(0≤x≤127)

  这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即

  y=200×45=9000(km)

  以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.

  类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的.特征呢?我们这节课就来学习.

  Ⅱ.导入新课

  首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?

  1.圆的周长L随半径r的大小变化而变化.

  2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.

  3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.

  4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.

  解:1.根据圆的周长公式可得:L=2r.

  2.依据密度公式p=可得:m=7.8V.

  3.据题意可知:h=0.5n.

  4.据题意可知:T=—2t.

  我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func—tion),其中k叫做比例系数.

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?

  [活动一]

  活动内容设计:

  画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.

  1.y=2x2.y=—2x

  活动设计意图:

  通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.

  教师活动:

  引导学生正确画图、积极探索、总结规律、准确表述.

  学生活动:

  利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.

  活动过程与结论:

  1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:

  x—3—2—

  y—6—4—

  画出图象如图(1).

  2.y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:

  x—3—2—

  y6420—2—4—6

  画出图象如图(2).

  3.两个图象的共同点:都是经过原点的直线.

  不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.

  尝试练习:

  在同一坐标系中,画出下列函数的图象,并对它们进行比较.

  1.y=x2.y=—x

  x—6—4—

  y=x—3—2—

  y=—x3210—1—2—3

  比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=—x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.

  总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k

  正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

  [活动二]

  活动内容设计:

  经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?

  活动设计意图:

  通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.

  教师活动:

  引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.

  学生活动:

  在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.

  活动过程及结论:

  经过原点与点(1,k)的直线是函数y=kx的图象.

  画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.

  Ⅲ.随堂练习

  用你认为最简单的方法画出下列函数图象:

  1.y=x2.y=—3x

  解:除原点外,分别找出适合两个函数关系式的一个点来:

  1.y= x(2,3)

  2.y=—3x(1,—3)

  小结:

  本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.课后作业

  习题11.2─1、2题.

  六年级《正比例》的教学设计 14

  教学目标

  1、知识与技能

  ①理解正比例函数的概念及正比例函数图象特征。

  ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

  2、过程与方法

  ①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

  ②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

  3、情感态度与价值观

  ①结合描点作图培养学生认真细心严谨的学习态度和习惯。

  ②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

  教学重点:

  探索正比例函数图形的形状,会画正比例函数图象。

  教学难点:

  正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合

  教学准备:

  多媒体课件

  教学过程

  一、提出问题,创设情境,激发学生的学习兴趣情境

  1、(1)你知道候鸟吗?

  (2)它们在每年的迁徙中能飞行多远?

  (3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。

  【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。

  二、出示本节课的学习目标

  ①理解正比例函数的概念及正比例函数图象特征。

  ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

  教师用课件展示学习目标,学生齐声朗读,记忆。

  【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。

  三、自学质疑:

  自学课本86——87页,并尝试完成下列问题

  1、写出下列问题中的函数表达式

  (1)圆的周长|随半径r的大小变化而变化

  (2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?

  (3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化

  (4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化

  2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

  【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。

  教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。

  一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

  教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0?

  上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出)

  做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2

  通过上面的例子,师生共同总结正比例函数须满足下面两个条件:

  1、比例系数不能为0

  2、自变量X的次数是一次的。

  表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。

  (1)正方形的边长为xcm,周长为ycm;

  (2)某人一年内的月平均收入为x元,他这年的.总收入为y元;

  (3)一个长方体的长为2cm,宽为,高为xcm,体积为ycm3

  【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。

  我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动]

  1、各小组合作回顾函数图象的画法,画出下列函数的图象

  (1)y=2x(2)y=—2x

  【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。

  教师活动:引导学生正确画图、积极探索、总结规律、准确表述。学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。活动过程与结论:

  1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112

  问:①观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行:

  (1)自变量

  (2)函数值

  (3)升降性

  (4)特殊点

  (5)过了那几个象限

  (6)图象的形状

  ②总结正比例函数图象的性质

  3、两个图象的共同点:都是经过原点的直线。不同点:函数y=2x的图象从左向右呈状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈状态,即随x增大y反而减小

  三、巩固练习:

  1、判断下列函数哪些是正比例函数

  (1)y=2x

  (2)y=kx(k≠0)

  (3)y=—1/3x(4)y=1/2x+2

  (5)y=3x2

  (6)y=—3x2

  2、教材练习题

  比较两个函数图象可以看出:两个图象都是经过原点的直线。函数的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数的图象从左向右下降,经过二、四象限,即随x增大y反而减小。

  四、总结归纳正比例函数解析式与图象特征之间的规律:

  正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们可称它为直线y=kx。当k>0时,直线y=kx经过一、三象限,从左向右上升,即y随x的增大而增大;当k二、四象限,从左向右下降,即y随x的增大而减小。

  五、巩固深化

  1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。

  2、活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象。画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。

  随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x

  六、总结归纳,布置作业

  1、在本节课中,我们经历了怎样的过程,有怎样的收获?

  2、你还有什么困惑?

  作业:P98习题19.2─1、2题。

  教学设计说明:

  本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。

  六年级《正比例》的教学设计 15

  教学目标:

  通过具体问题认识成正比例、反比例的量。

  能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值。

  能找出生活中成比例和成反比例量的实例,并进行交流。

  教学重点和难点:

  理解两个变量之间的函数关系

  教学准备

  小黑板投影片

  教学过程:

  本节课主要是对回顾与交流部分知识进行复习。

  一、生活中有哪些成正比例的量?有哪些成反比例的量?小组同学互相举例说一说。

  ①可以让学生课前进行复习,并收集相关信息,课上展示。

  ②以小组形式展开交流、反思,然后组织汇报。

  ③展示部分学生的优秀作品。

  二、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

  (1)可以列表。

  (2)可以画图。

  (3)可以用式子表示。

  教材创设了路程和时间之间的`关系,并运用表格、图、关系式、自然语言等方式来描述这一关系,使学生体会刻画数量之间的关系的多种形式,并促使学生在几种方式之间进行转化。教学时,教师可以再举出一些实际问题或鼓励学生提供出实际问题,让学生再次经历多种方式表示的过程;教师应通过语言、板书等形式将几种方式进行对应。

  三、举出生活中数学中一量虽另一量变化的例子。将学生的视野由正比例、反比例拓展到两个量之间的关系,这也体现了教材的特点,学生只要举出例子就行了,教师可以让学生说清楚谁随谁变化,对于感兴趣的学生,教师可以鼓励学生通过表格、兔等大致的刻画变量之间的关系。

【六年级《正比例》的教学设计】相关文章:

正比例教学设计05-11

《正比例》教学设计08-14

《正比例》教学设计09-09

正比例教学设计05-19

正比例教学设计09-19

正比例函数教学设计04-17

正比例函数教学设计03-29

《正比例的意义》教学设计10-16

有关《正比例》的教学设计05-12

正比例函数教学设计09-29