五年级上册数学教学设计范文(精选5篇)
作为一位杰出的教职工,编写教学设计是必不可少的,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么教学设计应该怎么写才合适呢?以下是小编为大家收集的五年级上册数学教学设计范文(精选5篇),欢迎大家分享。
五年级上册数学教学设计1
教学目标:
1、通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
2、掌握用“四舍五入”法截取商的近似数的一般方法。
3、在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
教学重点:
掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:
理解求商的近似数与积的近似数的异同。
教学准备
有关的课件。
教学过程
一、复习引入:
1.按照要求写出表中小数的近似数。(PPT课件出示题目。)
保留整数保留一位小数保留两位小数保留三位小数
2.求出下面各题中积的近似值。(PPT课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
二、探究新知:
1.学习例6。
(1)出示例6题目信息。(PPT课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)
(3)引导学生交流、概括。(PPT课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
三、巩固应用:
1.基本练习。
完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
2.提高练习。
判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
四、总结评价:
这节课你学会了什么?有什么收获?
教学反思:本节课从生活情景入手,让学生知道数学源自于生活,很大空间给了学生独立思考,在真实化的情境中体验感悟数学。在教学例7的时候,以谈话方式引出数学问题,营造一种利于学习的氛围,引导学生体验数学来源于生活,让学生经历求商的近似数的过程,更加能让学生加深理解记忆。
学生总结出方法后,再进行加强联系。但在练习中我发现有一部分学生还是不能明白“比要求多除一位”的意思,比如要求商保留三位小数,学生做竖式时就只除到小数第三位,没有多除一位,导致结果出错。因此,只要不断强调方法中加强巩固,学生熟悉了自然错误就减少了。
在求商的近似数时,学生最感到困难的是根据实际情况进行保留,提醒学生并不是任何时候都可以用四舍五入的方法保留,有时要用“进一法”,有时用“去尾法”,我让学生举例说说什么时候“进一”,什么时候“去尾”,帮助学生理解。
五年级上册数学教学设计2
教学内容:
教科书58页例1。
教学目标:
1、结合图例,根据等式不变的性质,学会解简易方程。
2、掌握解方程的书写格式,并能用代入法进行检验。
3、提高学生的分析、理解能力,同时渗透函数的思想。
教学重点:
掌握解方程的方法和书写格式。
教学重点:
掌握解方程的方法。
教具准备:
可见、平台
教学过程:
一、复习。
1、提问:什么是方程?
2、判断下面各式哪些是方程?
3、后面括号中哪个x的值是方程的解?
(1)X +42=98 (X =57,X =135)
(2)5.2- X =0.7 (X =4.5,X =8.8)
4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)
5、导入:今天,我们就利用等式的性质来解方程。
板书课题:解方程
二、新课学习。
1、出示例1的图
(1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?
(盒子里有X个皮球和外面3个皮球等于9个皮球)
(2)请学生根据关系列出式子。
板书:X +3=9
(3)问:怎样解这个方程呢?(出示课件)
(4)师:我们可以用天平保持平衡的道理来帮助解方程。
(5)看课件演示
问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?
(6)学生思考后回答。
(7)演示课件
教师一边演示一边在黑板写出:X +3-3=9-3
(8)师生小结:方程两边同时减去同一个数(3)
(9)问:为什么要减3,减2可以吗?学生回答
(10)天平两边同时减去同一个数,天平两边还平衡吗?
出示课件,学生回答:平衡
师板书:左右两边仍然相等
(11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)
2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程
的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)
3、质疑:看书58页,还有什么不明白的地方?
(通过练习测试学生的掌握程度)
五年级上册数学教学设计3
教学目标:
1、 使学生能够运用分数表示可能性的大小,自主的设计一些活动方案。
2、 对实际生活中的事件和现象,学生能运用可能性的知识进行合理地解释。
教学重点:
在学生学习分数表示可能性大小的基础上,提出自主设计方案。
教学难点:
让学生自主设计活动的方案
教学过程:
一、课前谈话
教师做自我介绍。(生自由介绍)
你们学校五年级有几个班啊?咱班被选中和老师一起来上课的可能性是多少?(生答)嗯,很难得!
这次讲课活动啊,共有55位数学老师参加,那老师被抽到给你们上课的可能性是多少?(五十五分之一)是啊,在可能性这么小的情况下,老师有幸为你们上课,这个机会更难得!所以老师觉得,我和你们真的很有缘分,你们觉得呢?那么,就让我们好好的珍惜这份缘分,好好的利用这一节课的时间,可以吗?
二、创设情境
同学们啊,你知道马上就要到什么节日了吗?(生:圣诞节)圣诞节这天你最盼望的是什么啊?(收到礼物)
今天老师也给你们准备了礼物,想要吗?只可惜,老师准备的礼物不够,那我们不如玩个幸运摸奖游戏,试试你的运气,怎么样?摸到红球的同学可以得到老师准备的礼物哦,谁愿意来试一下?(生摸球)
老师这个盒子里放入了1个红球、两个白球、三个红球,通过游戏想一想,摸到红球的可能性是多少?(生答)怎么想的?
师:在游戏中我们运用上节课所学的知识知道了“摸到红球的可能性是六分之一,像这样好玩又有趣的游戏你能设计吗?那今天这节课我们就来当一次小小设计师。
(板书——设计活动方案)
三、探究新知
设计活动一
(1)刚才只有x位同得到了礼物,可是老师很想把这些礼物都送给大家,那么怎样往盒子里放球,会使你们摸到红球的可能性大一些呢?(生陆续举手)看样子,有的同学已经有了自己的想法,下面就以小组为单位,把你的想法与小伙伴们交流,看你们能设计出什么样的方案?开始吧!
(2)小组活动,师巡视指导。
(3)哪个小组愿意到前面来汇报一下你们的设计方案?
(4)生分组汇报。
设计活动二
(1)为我班学生设计节目表演活动方案。师出示要求,生读题。
(2)学生同位合作填表格,师巡视指导。
(3)学生汇报,师汇总。
(4)观察这些方案,你有什么看法?
设计活动三
(1)为了调动同学们的积极性,凡是参加活动的30名同学都可以得到一份纪念品,根据他们的兴趣爱好,我准备了食品、学习用品和小型玩具三种纪念品,要使同学们得到学习用品的可能性是五分之二,该如何设计呢?你能帮我设计一个活动方案吗?
(2)独立设计活动方案,教师巡视指导。
(3)学生汇报,教师汇总,那对于这些方案,你又有什么发现?
那你能不能根据他们的共同点,对这些方案进行总结一下?
四、巩固应用
现在很多商场超市在节日期间,都想出了很多别出心裁的促销活动。
1、下面是老师的调查情况(出示课件)学生读题。
2、同学们以小组为单位,进行设计。
3、汇报想法,实物投影总结活动情况。
4、看看另外一个商场的促销活动吧!(课件)学生读题
五、总结
通过本节课的学习,你都有哪些收获?你有什么体会?
五年级上册数学教学设计4
教学目标
1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题。
2.提高学生分析问题,解决问题的能力。
3.培养学生大胆尝试,勇于探索的精神。
教学重点
1.找到与求路程应用题的'内在联系。
2.正确分析解答求相遇时间的应用题。
教学难点
掌握求相遇时间应用题的解题思路。
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题。
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画。
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇。
想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:
相遇时间=路程速度和。
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答。
2.订正答案。
3.质疑:对于求相遇时间应用题还有什么问题?
4.教师提问
(1)要求相遇时间题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
五年级上册数学教学设计5
教学目的:
1、在学习了统计表和统计图这一单元后,让同学利用所学的统计知识,认识我们身边浪费水的现象,从而树立节约用水的意识。
2、通过动手操作和分析,认识水环境的污染,认识到节约用水要从节约每一滴水做起。养成不论在何时何地,都要节约用水的好习惯。
教学重点:
通过数学计算和分析,认识到节约用水的重要性,提出有效的节水措施。
教学准备:
学具:计算器、三角板、铅笔; 课前同学收集有关水资源知识;教具:多媒体课件。
教学过程:
一、 创设情景,引出问题。
师:同学们,现在我们全世界人民的目光都在关注着哪里?
(生齐答:伊拉克战争。)
师:美、英等国为什么不顾全世界人民的反对要向伊拉克发动战争呢?
(生答:想占领伊拉克的石油。)
师:关于战争,联合国的有关组织曾说了一段这样的话
(多媒体播放声画)
紧接着师导入:石油争完了,再过几年或几十年,人类将面临着争水的战争,同学们,作为二十一世纪的小主人,你们有什么感想?
(生:美国人真可恶
我们中国缺水吗?水不是用之不竭,取之不尽吗,为何还要打仗呢?)
二、 分析问题,得出结论
1、师抓住刚才同学提出的水不是用之不竭,取之不尽吗,为何还要打仗呢?这个问题,你们认为这位同学说的有道理吗?先分组讨论一下,然后你们能根据课前你所收集的资料进行说明吗?
(生分组讨论,师巡视观察)
2、生分组汇报讨论的结果。最后引导得出:我们中国是一个缺水的国家,深圳是一座缺水的城市,我们大家都要节约用水。
3、师:同学们,在我们平时的日常生活中,常可以碰到这样的情况:水龙头或水管坏了,水一滴一滴地往外流(多媒体出示),遇到这种情况你会怎么办?
生1:不论他,一滴一滴地滴也滴不了多少
生2:修好他,或换一个
同学们,你同意哪一种说法呢?(少数同学同意第一个说的。)你们能用我们所学的数学知识来说服第一种说法的同学吗?先自由地讨论一下。
【五年级上册数学教学设计范文(精选5篇)】相关文章:
小学五年级上册数学教学设计02-16
最新人教五年级上册数学教学设计01-28
数学五年级下册教学设计范文01-04
人教语文五年级上册教学设计范文12-29
人教版数学三年级上册教学设计范文03-25
人教版数学六年级上册教学设计范文01-05
三年级上册数学教学设计范文01-03
数学五年级下册教学设计01-04
数学必修四教学设计范文01-04