高二数学教学计划

时间:2021-09-29 16:57:48 教学计划 我要投稿

高二数学教学计划范文汇总5篇

  时间过得可真快,从来都不等人,我们的工作同时也在不断更新迭代中,写一份计划,为接下来的学习做准备吧!计划怎么写才不会流于形式呢?以下是小编为大家整理的高二数学教学计划5篇,仅供参考,大家一起来看看吧。

高二数学教学计划范文汇总5篇

高二数学教学计划 篇1

  一、指导思想:

  为进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、 教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、 教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、 学情分析:

  1、基本情况:高二(1) 班共50 人,男生36 人,女生14 人;本班相对而言,数学尖子约13 人,中上等生约23 人,中等生约6 人,中下生约6人,后进生约 2 人。

  高二(2) 班共49 人,男生37 人,女生12 人;本班相对而言,数学尖子约0人,中上等生约7人,中等生约8人,中下生约22人,后进生约12人。

  2、(1)班学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学要求:

  1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

  2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。

  3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

  5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

  6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

  7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

  9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

  8、所有考生都学习选修4-4 坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。

  六、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  七、教学进度安排(略)

高二数学教学计划 篇2

  一、指导思想

  主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考

  和作出判断。

  4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二.工作目标

  备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。

  1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。

  2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

  3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

  4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

  三.主要措施

  1.以老师的精心备课与充满激情的教学,换取学生学习高效率。

  2.将学校和教研组安排的有关工作落到实处。

  3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

  四.活动设想

  1.按时完成学校(教导处,教研组)相关工作。

  2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

  3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

  4.互相听课,以人之长,补己之短,完善自我。

  5.认真组织好培优辅差工作。

  6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作.

  7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略.

  五.教学内容与要求

  1.导数及其应用(约24课时)

  (1)导数概念及其几何意义

  ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

  ②通过函数图像直观地理解导数的几何意义。

  (2)导数的运算

  ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。

  ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。

  ③会使用导数公式表。

  (3)导数在研究函数中的应用

  ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修

  案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

  ②结合函数的`图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

  (4)生活中的优化问题举例。

  例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

  (5)定积分与微积分基本定理

  ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

  ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

  (6)数学文化

  收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)

  2.推理与证明(约8课时)

  (1)合情推理与演绎推理

  ①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中

  的作用(参见选修2-2中的例2、例3)。

  ②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

  (2)直接证明与间接证明

  ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

  ②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

  (3)数学归纳法

  了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  (4)数学文化

  ①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

  ②介绍计算机在自动推理领域和数学证明中的作用。

高二数学教学计划 篇3

  一、本课教学内容的本质、地位、作用分析

  (一)教材所处的地位和前后联系

  本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

  (二)教学重点

  ①简单随机抽样的概念,

  ②常用实施方法:抽签法和随机数表法

  (三)教学难点

  对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.

  二、教学目标分析

  1、知识目标

  (1)理解并掌握简单随机抽样的概念、特点和步骤.

  (2)掌握简单随机抽样的两种方法:抽签法和随机数表法.

  2、能力目标

  (1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.

  (2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学 问题的现象,加强观察问题、分析问题和解决问题的能力培养.

  3、情感、态度目标

  (1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.

  (2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.

  三、教学问题诊断

  本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

  如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

  1、创设情境,揭示课题

  用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题: 如何收集数据? 请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)

  2、学法指导,研探新知

  思考1:

  从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?

  一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?

  思考2:

  从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?

  一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?

  规律总结:

  一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。 .

  3 实际运用,巩固升华

  简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?

  ①抽签法

  提出问题学校要进行庆典,每个班到主会场观看节目有6个名额,高二(24)班共有57人,怎样分这6个名额? 要求:每个学生获得名额的概率相等小组讨论设计操作步骤。

  . 学生很容易联想到抽签法这时我又抛出一个问题:那如何实施抽签法?学生能根据生活中的经验来实施抽签法引导学生从解决这个问题的方法得出抽签法的一般步骤:

  先将总体中的所有个体(共有N个)编号(号码可从1到N)并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.

  ②随机数表法

  请你设计分配方案:

  5·12特大地震后,都江堰某地区198户地震损毁户需要搬进安居房,规模创造了全国之最.近期首批20套安居房准备发放.要求:每户首批获得安居房的概率相同 ,从而提出随机数表法的概念

  随机数表法:为了简化制签过程,我们借助计算机来取代人工制签,由计算机制作一个随机数表,我们只需要按照一定的规则,到随机数表中选取在编号范围内的数码就可以,这种抽样方法就是随机数表法。

  步骤:

  (1)将总体中的所有个体编号(每个号码位数一致)

  (2)在随机数表中任取一个数作为开始。

  (3)从选定的数开始按一定的方向(或规则)读下去,得到的号码若不在编号中,则跳过;若在编号中则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止。

  (4)根据选定的号码抽取样本。

  4、动手操作,合作交流

  学生亲自动手进行抽签,体会抽签的公平性。

  5、承上启下,留下悬念

  回到开篇提到的实际问题,引出抽样还有其他方法。

  四、教法分析和学法指导

  (一)教法分析

  1、讨论法与自学法相结合

  改变传统的把学生看作是接受知识的“容器”的现象.让学生参与到教学活动的全过程中来,体现学生参与的主体地位,使学生手、脑、口并用,主动地获取知识,允许学生争论,在讨论中加深学生对知识的理解与掌握.如在解决“整个抽样过程中每个个体被抽到的概率是相等的”时组织学生讨论,在讨论的过程中使学生对这一难点有一个清楚的认识;又如在学习随机数表法时组织学生自学,既提高了学生独立学习、主动获取知识的能力又能满足学生在自学的过程中获得的成就感从而培养了自信心.

  2、指导法

  结合一些具体事件,如对用抽签法解决问题等事件进行分析,从而使学生对简单随机抽样过程有一个清楚的认识,加深对简单随机抽样方法的理解.

  3、利用多媒体辅助教学

  (二)学法指导

  (1)通过丰富的例子引入数学知识,引导学生应用数学知识解决实际问题,教会学生从生活中发现数学,学习数学,如学生从生活的实例发现问题得出简单随机抽样方法就是从生活

  中发现数学,用数学解决实际问题.

  (2)教会学生独立思考、自主探索、动手实践、合作交流的学习数学的方式,体现在整个教学过程中,如“研探新知”、“实际运用”等.

  五、预期效果

  学生能够用简单随机抽样方法,解决部分实际问题。

高二数学教学计划 篇4

  一、指导思想

  在学校和数学小组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”“五严”。在有限的时间内,学生可以获得必要的基本数学知识和技能,同时可以提高数学能力,从而为未来的发展奠定坚实的数学基础。

  二、教学措施

  1.以能力为中心,以基础为基础,调整学生的学习习惯,激发学生的学习热情,使学生在学习中获得成功

  3、脚踏实地做好实施工作。内容和消化当天,加强检查和实施每日和每月的通关演习。每周练习,每次考试一章。通过每周一次的练习,突破一些重点和难点,在考试的每一章检查差距和填空,考完试再对每一章的不足之处进行点评。

  4、周练章考,认真把握试题选择,认真把握高考脉搏,注重基础知识的考查,注重能力的考查,注重思维的层次性(即解题的多样性),及时引入一些新题型,加强应用题的考察。每次考试都坚持集体研究,努力提高考试效率。

  5.注意所选的例子和练习:

  6.精心规划合理安排,根据数学的特点,注重知识和能力的提高,增强综合解题能力,加强解题教学,使学生提高解题探究能力。

  7.从“贴近教材、贴近学生、贴近实际”的角度,选择典型的数学与生活、生产、环境、科技等方面的问题联系起来,有计划、有针对性地培养学生,给学生更多锻炼各种能力的机会,从而达到提高学生数学综合能力的目的。基础扎实的学生,不脱离基础知识,能力未必强。基础知识在教学中不断应用于解决数学问题。

  三、对自己的要求——实施各方面的教学

  1.认真教每一节课

  备课时要从实际出发,精心设计每节课,分工协作,用集体智慧制作课件,充分运用现代教育手段服务教学,45分钟内提高课堂效率。

  2.严格控制考试,认真做好每次复习资料和练习

  教材要要求学生根据教学进度完成相应的练习,教师要给予检查和必要的点评,教师要提前指出自己没有做的问题,以免影响学生的学习。三类习题(大习题、限时训练、月考)试题制作分工落实到每个人(月考试卷由备考组制作,大习题、限时训练试卷由其他老师制作),经组长严格把关后才能使用。

  注重考试质量和试卷分析,定期组织备考组老师分析学习情况,发现问题,找到对策,及时解决,确保学生学习积极性不断提高。

  3.做好批改作业,加强疏导

高二数学教学计划 篇5

  (1)知识目标:

  1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标:

  1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}

  由两点间的距离公式,点M适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  I.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本P77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  II.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  III.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以C(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  (五)小结反思(拓展引申)

  1.课堂小结:

  (1)圆心为C(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

  (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

  (4) 求解应用问题的一般方法

  2.分层作业:(A)巩固型作业:课本P81-82:(习题7.6)1.2.4

  (B)思维拓展型作业:

  试推导过圆 上一点 的切线方程.

  3.激发新疑:

  问题七:1.把圆的标准方程展开后是什么形式?

  2.方程: 的曲线是什么图形?

  教学设计说明

  圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力。

【高二数学教学计划范文汇总5篇】相关文章:

高二数学教学计划(集合15篇)01-19

高二上学期数学教学计划范文7篇12-28

小学的数学教学计划范文03-21

高二教师学期教学计划五篇范文01-15

高二化学上学期教学计划范文03-22

英语高二教学计划01-10

教师需要的数学教学计划范文01-17

初二数学的教学计划范文03-22

【精选】高二上学期数学教学计划4篇12-25

有关高二上学期数学教学计划四篇12-30