勾股定理教学反思(通用20篇)
作为一位刚到岗的人民教师,我们要在教学中快速成长,写教学反思可以很好的把我们的教学记录下来,那么问题来了,教学反思应该怎么写?以下是小编为大家整理的勾股定理教学反思,欢迎大家分享。
勾股定理教学反思 1
勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的.过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:
一、导入新课,设疑巧激趣。
引入20xx年在北京召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的注意力,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。
二、引导量量、猜猜、证证,有条不紊,思路清晰。
让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。
三、注重学生的情感目标,实现加强爱国主义教育。
本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的民族自豪感,促使探索新知识的热情,整个课堂师生和谐,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。
四、课堂上充分体现学生的主体地位,教师是组织者,引导者。
例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的组织者、合作者。
通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。
①感觉今天这堂课没有平时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动提问的人较少。
②讲学稿编设的内容较多,有点欲速则不达的感觉。
勾股定理教学反思 2
勾股定理整章书的内容很少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股地理的认识。在教学的过程中感觉有几个方面需要转变的。
一、转变师生角色,让学生自主学习。
由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。可仍然证明不了我们的猜想是否正确。之后用拼图的方法再来验证一下。让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明。
新课标下要求教师个人素质越来越高,教师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。
"教师教,学生听,教师问,学生答,教室出题,学生做"的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,高效课堂上要求老师一定要改变角色,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
二、转变教学方式,让学生探索、研究、体会学习过程。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于我们这儿的学生起点低、数学基础差、实践能力差,对学生的各种能力培养非常不利的。课堂中要特别关注:
1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的`联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。
3、学习的知识性:掌握勾股定理,体会数形结合的思想。
三、提高教学科技含量,充分利用多媒体。
勾股定理知识属于几何内容,而几何图形可以直观地表示出来,学生认识图形的初级阶段中主要依靠形象思维。对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置。
培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。教科书的几何部分,要先后经历"说点儿理""说理""简单推理"几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。
由于信息技术的发展与普及,直观实验手段在教学中日益增加,本节课利用我们学校建立了电教教室,通过制作课件对于几何学的学习起到积极作用。
勾股定理教学反思 3
课堂教学中要正确地、充分地引导学生探究知识的形成过程,应创造让学生主动参与学习过程的条件,培养学生的观察能力、合作能力、探究能力,从而达到提高学生数学素质的目的。多媒体教学的优化组合,在帮助学生形成知识的过程中扮演着重要的角色。通过面积计算来猜想勾股定理或是通过面积割补来验证勾股定理并不是所有的学生都是很清楚,教者可通过多媒体来演示其过程不仅使知识的形成更加的直观化,而且可以提高学生的学习兴趣。
在本节课的教学中,老师可以从多方面对学生进行合适的评价。如以学生的课前知识准备是一种态度的评价,上课的拼图能力是一种动手能力的评价,对所结论的分析是对猜想能力的一种评价,对实际问题的分析是转化能力的一种评价等等。只有老师给予学生适时的适当的评价,才能使学生充分认识到自身的价值,从而达到提高学生学习自信心的目的,反过来自信心的'提高又促使学生学习的积极性大幅度的提高,真正达到从他律转为自律的目的。也只有这样才能提高课堂的教学效果,提高学生的学习成绩。
我相信教者只有不断的反思自己的教学,不但能很好地实施新课改,实现课改的根本目的,同时能真正的提高学生学习成绩。
勾股定理教学反思 4
根据学生的认知结构与教材地位,为了达到本节课的教学目标,我设计了以下几个环节:
1、创设情境,提出猜想让学生判断两位同学的画法是否都能得到斜边为10cm的直角三角形,通过对不同画法的探究,温故知新,为用构造全等三角形的方法证明勾股定理的逆定理做好铺垫。同时,引导学生从特殊到一般提出猜想。
2、证明猜想,得出新知。由于有前一环节的铺垫,通过启发、引导、讨论,让学生体会用构造全等三角形的.方法证明问题的思想,突破定理证明这一难点,并适时出示课题。
3、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,我设计了三个层次的问题,以达到教学目标。第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题。根据学生原有的认知结构,让学生更好地体会分割的思想。设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验。真正体现学生是学习的主人。
4、归纳小结,形成体系让学生交流学习的收获、课堂经历的感受和对数学思想方法的感悟体会等。帮助学生内化新知,优化学生的认知结构,形成能力,减轻课后负担。
5、布置作业,课外延伸分层布置作业,目的是让不同的学生得到不同层次的发展
勾股定理教学反思 5
本节课是公式课,探索勾股定理和利用数形结合的方法验证勾股定理。勾股定理是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起着重要的作用,在现实世界中也有着广泛的作用。由此可见,勾股定理是对直角三角形进一步的认识和理解,是后续学习的基础。因此,本节内容在整个知识体系中起着重要的作用。
针对八年级学生的知识结构和心理特征,本节课的设计思路是引导学生‘做’数学”,选用“引导探究式”教学方法,先由浅入深,由特殊到一般地提出问题,接着引导学生通过实验操作,归纳验证,在学生的自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的组织者、引导者与合作者”的教学理念。通过教师引导,学生动手、动脑,主动探索获取新知,进一步理解并运用归纳猜想,由特殊到一般,数形结合等数学思想方法解决问题。同时让学生感悟到:学习任何知识的最好方法就是自己去探究。
本节课采用的教学流程是:创设情境→激发兴趣→提出问题→故事场景→发现新知→深入探究→网络信息→规律猜想→数字验证→拼图效果→实践应用→拓展提高→回顾小结→整体感知等环节共六个活动来完成教学任务的。在这一过程中,让学生经历了知识的发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想,从而更好地理解勾股定理,应用勾股定理,发展学生应用数学的意识与能力,增强了学生学好数学的愿望和信心。
本节课中的学生对用地砖铺成的地面的观察发现,计算建立在直角三角形斜边上的正方形面积,对直角三角形三边关系的发现,自我小结等,都给学生提供了充分的表达和交流的机会,发展了语言表达和概括能力,增强了合作意识。由展示生活图片,感受生活中直角三角形的应用,引导学生将生活图形数学化。感受到生活中处处有数学。由实际问题:工人师傅要做出一个直角三角形支架,一般会怎么做?引导学生思考:直角三角形的三边除了我们已知的不等关系以外,是不是还存在着我们未知的等量关系呢?调动学生的学习热情,激发学生的学习愿望和参与动机。由学生观察地砖铺成的地面,分别以图中的直角三角形三边为边向外作正方形,求出这三个正方形的面积,尤其计算建立在直角三角形斜边上的`正方形面积。
这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
得出结论后,还要引导学生用符号语言表示勾股定理,如符号语言:Rt△ABC中,∠C=90,AC2+BC2=AB2(或a2+b2=c2),因为将文字语言转化为数学语言是数学学习的一项基本能力。其次,介绍“勾,股,弦”的含义,进行点题,并指出勾股定理只适用于直角三角形;最后介绍古今中外对勾股定理的研究,这样可让学生更好地体会勾股定理的丰富内涵与文化背景,陶冶情操,丰富自我,从中得到深层次的发展。
勾股定理教学反思 6
一、教师我的体会:
①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。
②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。
③、新课选用的`例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。
④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。
二、学生体会:
课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。
不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。
勾股定理教学反思 7
通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。
已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。在上节课学习过程中,学生已经练习过。但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。因此,当让学生自己独立完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。
同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。如果此时能对已经解答出来的同学大力表扬,并让学生引导学生来解答余下的问题,那么效果会更好。
数学问题生活化,用数学知识解决生活中的实际问题,是课程改革后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己探索、尝试,并在失败中寻找成功的途径。本题教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。课前预设与课堂生成,这是课程改革以来出现的最多问题之一。课堂教学任务要完成,而课堂又要还给学生,充分发挥学生的自主性,那么如何处理好这个问题呢?在本课最后的这个环节里,如果能引导学生归纳本课学生的方法,特别是面积法,然后再给一个简单的问题来巩固,那么效果肯定会比这样匆匆结束课堂要好。但是,这部分知识内容又什么时候来解决呢?不解决行不行呢?这是课后困扰我的问题。“课堂教学应基于自身班级学生的具体情况,不论是课前预设(备课)还是课堂教学过程,都应以使绝大部分学生能真正学习掌握好为基础。”经过本节课的.教学后,我自己对有效的课堂产生了一个这样的认识。在以“知识为中心”还是以“学生学习为中心”的这个问题上,我想应以学生为中心,同时兼顾教学内容的完成,如果发生矛盾时,那么我想是不是仍应以学生为中心呢?这样教学任务完成不了怎么办呢?影响教学进度又怎么办呢?考试又怎么办呢?其实,归根到底是:考试了怎么办呢?课程改革已走到了第七个年头,考试始终是一根有形无形的指挥棒在影响着我们每堂课的教学,在影响着我们的教学观念与教学方法,甚至于影响我们的教学理想。其实我们都很清楚,这样匆匆的进行课堂教学,虽然表面上看是完成了教学内容,但实际上学生并没有掌握好,考试时真的出现时学生仍是无法解答,那么,这样的教学岂不是也是无效的吗?无效的教学是不是在浪费学生的精力与时间呢?这样是不是有点自欺欺人了呢?想到这,我越感不安了
因此,如果有机会再上这节课,就算前面能提高一点效率,节省一点时间,我也会省去后面的那部分内容,增加一些有趣味的生活问题,总结与反思本课的方法,从而使学生对本课学习掌握得更好,对自身的数学学习更有自信。
勾股定理教学反思 8
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多媒体展示这一有意义的'图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识。从而教给学生探求知识的方法,教会学生获取知识的本领。并确立了如下的教学目标:
1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。
2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。
3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。
除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神。练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面。给学生自由的空间,鼓励学生多说。这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野。
勾股定理教学反思 9
《勾股定理》是人教版教材八年级数学(下)的内容,第一课时的教学重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。
针对教材的任务要求,我是按照如下的教学流程进行的:
一、欣赏图片引入新课,激发学生学习兴趣
通过欣赏20xx年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。
接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的.;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
二、动手探究,得出猜想
通过对地板图形中的等腰直角三角形三边关系到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内讨论,然后在全班讨论,尽量学习更多的方法。
三、动手实践,得出定理
先了解赵爽的证明思路,然后让学生利用学具自己动手剪拼,并利用图形进行证明。
由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。
勾股定理教学反思 10
时光稍纵即逝,转眼间一个新的学期又要结束了,回顾已逝的教学时光,可谓百味俱全,其间有一节课我上得最投入、最值得回忆与反思。
记得那是期末的展示汇报课,(主任说可能会有校外的教师来听课。)我当时很有压力,晚上也难以入睡。我选的是《勾股定理》一课。为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新手段来打造我的这节课。当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。
1、从生活出发的教学让学生感受到学习的快乐
在“勾股定理”这节课中,一开始引入情景:
平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的'最短距离,这些都是勾股定理应用的典型例题。
3、名题欣赏:首尾呼应,用“代数方法”解决“几何问题”。印度数学家婆什迦罗(1141—1225年)提出的“荷花问题”比我国的“引葭赴岸”问题晚了一千多年。“引葭赴岸”问题,是我国数学经典著作《九章算术》中的一道名题。《九章算术》约成书于公元一世纪。该书的第九章,即勾股章,详细讨论了用勾股定理解决应用问题的方法。这一章的第6题,就是“引葭赴岸”问题,题目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?” “荷花问题”的解法与“引葭赴岸”问题一样。它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。《九章算术》中的勾股定理应用方面的内容,涉及范围之广,解法之精巧,都是在世界上遥遥领先的,为推动世界数学的发展作出了贡献。鼓励学生可以自己利用课余时间查阅相关资料,丰富知识。
4、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
5、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。
勾股定理教学反思 11
一、教学的成功体验
《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”。数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程。本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性。为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程。通过引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动。
二、信息技术与学科的整合
在信息社会,信息技术与课程的整合必将带来教育者的深刻变化。我充分地利用多媒体教学,为学生创设了生动、直观的.现实情景,具有强列的吸引力,能激发学生的学习欲望。心理学专家研究表明:运动的图形比静止的图形更能引起学生的注意力。在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上。本节课我通过Flash动画演示结果和拼图程以及呈现教学内容。真正体现数学规律的应用价值。把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃。
勾股定理教学反思 12
勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的和谐统一的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手:
一、注重知识的自然生发。
传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是组织学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的`过程中不断发展。
二、注重数学课上的操作性学习
操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。
三、注重问题设计的开放性
课堂教学是教师组织、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑提问来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸上任意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。
四、注重让学生经历完整的数学知识的发现过程。
新《数学课程标准》在关于课程目标的阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。
如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。
勾股定理教学反思 13
通过本节课的教学,我采用了合作探究、操作体验的教学方式。在课堂教学中,首先创设情境,提出问题;再让学生通过做一做、测量、判断、找规律,猜想出一般性的结论;然后由学生想、做、量一量、猜一猜、去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣。这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的`信心和勇气。
要想真正搞好以探究活动,小组合作为主的课堂教学,必须不断更新教学观念,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民
作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者。因此,课堂教学过程的设计,也必须体现出学生的主体性。
勾股定理教学反思 14
我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。这4个课时我采用的教学方法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。
第一课时的课堂教学中,我始终注意了调动学生的积极性。兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中。因此,课堂效率较高。勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵。特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力。勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点。
第二课时我依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点。为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理。
第三课时在课堂教学中,始终注重学生的自主探究,由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。对于拼图验证,学生还没有接触过,所以,教学中,教师给予了学生适当的指导与鼓励,教师较好地充当了学生数学学习的组织者、引导者、合作者。另外教会学生思维,培养学生多种能力。课前查资料,培养了学生的自学能力及归类总结能力;课上的探究培养了学生的`动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。
第四课时我另外向学生介绍了勾股定理的证明方法:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;以刘徽的“青朱出入图”为代表,“无字证明”。
总的来看,学生掌握的情况比较好,都能够达到预期要求,但介于有关勾股定理的类型题很多,不能一一为学生讲解,但我还是建议将北师大版本中的《蚂蚁怎样走最近》的类型题加入本教材。
勾股定理教学反思 15
本学期我们学习了人教版第十八章《勾股定理》这一章节,现在总结如下:
一、 变学生被动学为主动学
节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,特别是“赵爽弦图”激励他们奋发向上。同时培养学生的自学能力及归类总结能力。
二、注重学生自主探究学习模式
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
三、培养学生多种能力,教会学生多种思维
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力。课后加强学生自学能力,总结的能力。
四、培养数学应用意识
数学来源于生活,而又应用于生活。因此必须从实例引入,最后通过定理解决引例中的`问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。
五、不足之处:
本节课拼图验证的方法以前学生没接触过,稍嫌吃力。举勾股定理在生活中的例子时,学生思路不够开阔。实际问题中,学生难将实际问题转化为数学问题来解决,使得学过的知识和实际问题有点脱离,所以在后面的教学过程中要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。总之教学中要多思考,多反思,真真切切让我们的学生学好数学,将数学学好。
勾股定理教学反思 16
星期四下午讲了《勾股定理逆定理》第一课时,现对本节课反思如下:
(1)这节课的设计思路比较合理:着重体现“探究”这一主题,从“古埃及人得到直角三角形的方法”到学生用木棒模仿操作,再到画图自己证明等一系列活动,得出“勾股定理逆定理”,而对互逆命题,原命题,逆命题等概念的讲解只是作为新课引入的命题点化了一下,没有详细讲解、把这节课的重点放在了如何让学生通过三角形三边关系判断是否是直角三角形?在经过课堂练习及课堂检测来强化学生对勾股定理逆定理的理解,分别从三角形的边和角这方面来引导学生。
(2)本课PPT的使用是想凸显“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路,每个环节都是紧密相接的。
(3)课堂教学环节和教学效果我感觉很满意,学生在对问题的回答很积极,在突破难点的过程中,学生通过小组合作实验交流,自己总结归纳勾股定理逆定理,及证明中我给与学生充分的思考时间让学生自己完成。整个过程中体现了以学生为主,老师为主导的作用,课堂气氛活跃,效果挺好。
本节课的不足之处及改进方法:
1、本节课我没有及时发现学生的.错误。在学生上黑板做题时出现的错误没能及时发现及改正。
2、课堂检测做完后应让学生自己讲解,但时间不够导致这一环节没能让学生完成,而是在投影对了答案。
在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。
勾股定理教学反思 17
本节课的数学设计主要是从面对全体学生,针对学生知识水平、生活环境、思维特点、认知风格的差异等方面进行编写讲学稿的;它的主要目的是让学生应用所学的勾定理解决现实生活中的实际问题。由于学生才刚刚掌握勾股定理,根据教材,单刀直入,要求学生运用其定理解决生活中的实际问题,对部分学生来说还存在着一定的困难。故我们初二级组全体数学老师,对教材知识内容进行了有效的整合,从中提炼教学资源,把本章的教学内容进行了重建组合,使之符合我们的学生的认知特点,心理特点级学习特点,让学生学起来轻松,运用起来灵活。本节课主要是围绕“设置问题情境――建立教学模型――解释――应用及拓展”这一主线展开教学工作的。其闪光点主要有:
一、创设问题情境,引导学生积极思考,激发其探究欲望。
激发学生探究问题、解决问题,首先要激发其探究的兴趣,欲想要学生感兴趣,首先教师必须先创设与学习内容紧密相关的问题情境,能引导学生进行“数学思考”。本节课一开始,教师拿来一块木板表演从一间小小的门框穿过,横着进不了,竖着也过不了,问学生怎么办?瞬间,木板过门框问题成了大家讨论的焦点;同时引导学生,建立数学模型,突破将形转化为数这一思想转变难点。
二、能调动全体学生参与教学活动。
课堂教学活动形式多样化,有个人思考,有小组活动,有全班交流,让学生进行分析归纳,教师鼓励学生尽量用自己的语言表达自己的发现。感悟“图形”与“数量”之间的相互关系,将教学内容生活化,动态化,使学生更真切地感受到勾股定理的使用性,整节课师生之间均处与主动状态。
三、讲学稿的设计,不拘泥于教材,吃透教材,敢于创新。
讲学稿中所设计的例题或习题,富于生活气息。例、木板过门框、折断的树,电视机的大少等,都与现实生活有关。其实是告诉学生数学是为生活服务的,同时,数学也是来自于生活。
四、教学目标明确,能突破教学重点、难点,教学程序有条不紊,思路清晰,或活而不乱。教师具有一定的调控能力,能轻松驾御课堂,应付自如。学生在课堂内能正确完成预设的练习。
五、注重知识的`前后连贯性,练习具有一定的层次性,使全体学生学有所用,课后拓展题,拓宽了学生的思路,培养了学生的审题能力,挖掘学生的潜能。
上完一节课下来,总感到有点遗憾。不足之处说出来与大家共同探讨。例题的解答板书教师应在黑板上一步一步示范,尽量少用多媒体示范,因为幻灯片一会儿就换了,不利于学困生学习;讲学稿的编设内容过于简单基础化,不适合优生的培养,课堂中集体回答问题较多,学生单独思考、答题、独立完成作业的机会不多;课后作业与堂上练习拓展不够深,有待改善。但愿我们能互相学习,取长补短,共同进取。
勾股定理教学反思 18
根据学生的认知结构与教材地位,为了达到本节课的教学目标,我设计了以下几个环节:
1、创设情境,提出猜想让学生判断两位同学的画法是否都能得到斜边为10cm的直角三角形,通过对不同画法的探究,温故知新,为用构造全等三角形的方法证明勾股定理的逆定理做好铺垫。同时,引导学生从特殊到一般提出猜想。
2、证明猜想,得出新知。由于有前一环节的铺垫,通过启发、引导、讨论,让学生体会用构造全等三角形的方法证明问题的思想,突破定理证明这一难点,并适时出示课题。
3、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,我设计了三个层次的问题,以达到教学目标。第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题。根据学生原有的认知结构,让学生更好地体会分割的思想。设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的'兴趣,感受探索、合作的乐趣,并从中获得成功的体验。真正体现学生是学习的主人。
4、归纳小结,形成体系让学生交流学习的收获、课堂经历的感受和对数学思想方法的感悟体会等。帮助学生内化新知,优化学生的认知结构,形成能力,减轻课后负担。
5、布置作业,课外延伸分层布置作业,目的是让不同的学生得到不同层次的发展。
勾股定理教学反思 19
星期三上午第一节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的'练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
勾股定理教学反思 20
本节课主要通过勾股定理的证明探索,使学生进一步理解和掌握勾股定理。通过利用质疑、拼图观察、思考、猜想、推理论证这一过程,培养学生探求未知数学知识的能力和方法,培养学生求异思维能力、认知能力、观察能力和独立实践能力。学生独立或分组进行拼图实验,教师组织学生在实验过程中发现的有价值的实验结果进行交流和展示。本节课的过程由激趣、质疑、实验、求异、探索、交流、延伸组成。
本节课的成功之处:
1、创设情景,实例导入,激发学生的学习热情。
2、由于实现了教师角色的转变,教法的创新,师生的平等,气氛的活跃,学生积极参加。
3、面向全体学生,以人为本的教育理念落实到位。整节课都是学生自主实验、自主探索,自主完成由形到数的转化。学生勇于上讲台展示研究成果,教师只是起到组织、引导作用。
4、通过学生动手实验,上台发言,展示成果,体验了成功的喜悦。学生的自信心得到培养,得到张扬。通过当场展示,让学生体会到动手实践在解决数学问题中的.重要性,同时也让学生体会到用面积来验证公式的直观性、普遍性。
5、学生的研究成果极大地丰富了学生对勾股定理的证明的认识,学生从中获得利用已知的知识探求数学知识的能力和方法。这对学生今后的学习和将来的发展是大有裨益的。同时验证勾股定理的证明的探究,使学生形成一种等积代换的思想,为今后的学习奠定基础。
本节课的不足之处及改进思路:
1、小部分能力基础和能力都比较差的学生在探索过程中无所事事,因此教师应该在课前对不同层次的学生提出不同的要求,让每个学生多清楚地知道这节课自己的任务是什么。
2、本节课拼图验证的方法是以前学生很少接触的,所以在探索过程中很多学生都显得有些吃力。所以教师在讲方法一时,应该先介绍这种证明方法以及思路,让学生模仿第一种方法的基础上,能轻松地总结出第二种方法,从而产生去探索更多方法的兴趣和动力,有利于学生的数学思维的提升。
3、对学生的人文教育和爱国教育不够。很多学生在探索过程中遇到困难时,选择放弃或等别人的答案。教师此时应该注意引导学生要勇于克服困难,主动进行探索,提高了自身的推理能力和创新精神。同时教师也要不断渗透爱国教育,培养学生的民族自豪感和爱国热情。
在我们的数学教学中,活动课是不可忽视的内容。在这个探索的过程中,学生绝大多数是不会创造或发明什么的,这是一个素质的表现和培养过程。学生得到什么结果是次要的,重要的是使学生的素质和能力得到培养。这是中学数学活动课的价值取向。
【勾股定理教学反思】相关文章:
勾股定理教学反思03-27
《勾股定理》教学反思范文通用04-27
勾股定理教学反思(精选20篇)05-29
《勾股定理》教学反思(精选6篇)03-14
《勾股定理逆定理》教学反思05-27
勾股定理教学反思(精选19篇)04-29
《勾股定理逆定理》的教学反思03-06
《勾股定理》课后教学反思(精选12篇)04-03
勾股定理优秀教学反思(精选5篇)02-02