五年级数学《分数与除法》教学反思

时间:2021-06-23 15:32:36 教学反思 我要投稿

五年级数学《分数与除法》教学反思范文

  身为一名人民教师,我们都希望有一流的课堂教学能力,通过教学反思可以有效提升自己的教学能力,那要怎么写好教学反思呢?以下是小编精心整理的五年级数学《分数与除法》教学反思范文,欢迎大家分享。

五年级数学《分数与除法》教学反思范文

  五年级数学《分数与除法》教学反思1

  观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数/除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:

  (1)分母能不能为0?

  (2)用字母如何表示它们的关系?

  (3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。

  有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数/除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少……通过争辩,明确分数和除法的各自意义。

  提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

  五年级数学《分数与除法》教学反思2

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在讲这节课之前,本来以为是很简单的一节课,学生在理解分数与除法的关系时也一定会很容易,唯一的难点是用除法的意义理解分数的意义,我想只要借助实物圆形纸片给学生演示一下,学生就会理解了,但当我讲完这节课后,才发现我的想法太简单了,我把学生想象成理想化的学生了,这部分知识虽然有一部分学生理解了,但仍有一部分学生在用除法的意义理解分数还很困难。在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时, 能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

  五年级数学《分数与除法》教学反思3

  分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  1.以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  2.分数意义的拓展与除法之间关系的`理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。

  每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。

  从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以 “渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。

  五年级数学《分数与除法》教学反思4

  “分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。

  验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。

  观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

  情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。