平行四边形的面积教学反思

时间:2021-03-08 09:45:06 教学反思 我要投稿

平行四边形的面积教学反思(通用5篇)

  作为一名人民教师,教学是重要的任务之一,通过教学反思可以很好地改正讲课缺点,那么问题来了,教学反思应该怎么写?以下是小编帮大家整理的平行四边形的面积教学反思(通用5篇),欢迎阅读,希望大家能够喜欢。

平行四边形的面积教学反思(通用5篇)

  平行四边形的面积教学反思1

  小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

  本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

  我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:

  第一层:基本练习:书本P82第1题

  有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

  第二层:综合练习:

  1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?

  让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。

  2、你会求出这个平行四边形的面积吗?

  通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)

  学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:

  数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。

  前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。

  通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。

  平行四边形的面积教学反思2

  在教学设计时,我创设一个把长方形变成平行四边形,猜测面积是否变化的情境,激发学生的探究欲望。学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数平行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”本节课的.教学重点为“探究平行四边形的面积公式”,难点设立为“理解平等四边形的面积计算公式的推导过程”。为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的平行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说平行四边形面积公式的推导过程。这样让学生亲身经历操作过程,在交流演示中理解掌握了平行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。这样不仅让学生学到知识,更重要的是对学生渗透了平移和转化的数学思想方法,培养了学生观察、分析、概括和能力。

  我认为本节课的不足之处是:

  (1)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法,局限了学生的思维。应让学生充分展示,从而明确不同的割补方法,其结果是一样的。三种剪法。

  (2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。

  (3)对知识的巩固运用做的不够。本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力。但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。

  平行四边形的面积教学反思3

  本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。

  成功之处:

  1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。

  2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。

  不足之处:

  学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。

  再教设计:

  加强学生的语言表述能力,做到规范、严谨。

  平行四边形的面积教学反思4

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,我通过让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一.注重数学专业思想方法的渗透。

  我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆平行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出可以用数方格的方法来求平行四边形的面积。把这两个图形按每个格1平方米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数。”学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有能力的学生向转化的方法靠拢。

  二.注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地通过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以平行四边形的面积=底х高。学生掌握了平行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三.分层运用新知,逐步理解内化

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计了基础练习(算出下面每个平行四边形的面积。);提升练习(量出平行四边形的底和高的长度,并分别算出它们的面积。);

  发散练习(下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。

  四.需要改进的地方

  本节课的不足之处有:在进行把平行四边形转化为长方形时,书上虽只给出了两种方法,但是实际上有很多不同的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。而且这个环节过后,忘记强调一下,要沿着平行四边形的高剪下,才能平移拼成一个长方形。让学生说的部分还是显得很仓促,自己急于把正确答案给出,这是迫切需要改正的。

  教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

  平行四边形的面积教学反思5

  这节课我们所学习的的内容主要是平行四边形面积的计算。是在学生以前学过的长方形的面积和平行四边形认识的基础上学习的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。

  一、课程开始,我先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?

  平行四边形的面积怎么求呢?猜想平行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。

  二、注重学生数学思维的发展

  在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现平行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出平行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、不足之处

  本节课还有一些不足之处。在进行把平行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。

  虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。

【平行四边形的面积教学反思(通用5篇)】相关文章:

《面积》的教学反思(通用5篇)12-23

《平行四边形的面积》优秀教学反思【10篇】03-15

《土地面积》教学反思范文12-23

《圆的面积》教学反思范文(精选11篇)12-26

平行四边形面积计算的练习03-10

三年级《面积》教学反思12-27

关于面积单位教学反思范文(精选17篇)12-23

三年级《面积》课后的教学反思范文(通用5篇)12-18

《长方体的表面积公式推导》的教学反思12-23

圆的面积的教学设计03-09