圆的面积教案
作为一名教学工作者,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。我们应该怎么写教案呢?下面是小编帮大家整理的圆的面积教案,欢迎阅读与收藏。
圆的面积教案1
教学内容:
国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。
教学重点:
探索圆面积的.计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长12.56
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
圆的面积教案2
【教学目标】
知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。
数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。
问题解决:培养学生发现和提出问题,分析和解决问题的能力。
情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。
【教学重点】
掌握圆的面积计算公式,能够正确地计算圆的面积。
【教学难点】
理解圆的面积计算公式的推导过程。
【教学准备】
(1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端,
(2)教具:圆纸片、不同等分的圆卡片
(3)学具:剪刀、圆纸片、不同等分的圆卡片。
【教学过程】
学生课前完成课前导学案(后附课前导学案的内容)
一、课前互动:
师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?
生:越来越接近圆形。
生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。
师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了
师:哪一个图形最特别。
生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。
师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?
生:想。
师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。
二、创设情境,引发问题
师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)
师:看到课题你最想研究什么问题?
(预设)生:什么是圆的面积?
(预设)生:如何求圆的面积?
师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)
【设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。
师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?
(预设)生:圆的大小就是它的面积,
师:说的对,是这一部分的大小吗?(课件把圆填充颜色)
师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。
(课件出示)
师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4
r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?
(预设)生:2个小正方形的面积
(预设)生:3个小正方形的面积
师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。
(预设)生:等于两个正方形的面积之和,也就是2r2,。
师:那么这个圆的面积呢?还要重叠过来吗?
师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?
(预设)生:大约是3r2
师:能确定?为什么不估2r2和4r2
(预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.
师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。
(课件出示)两个正方形的面积<圆的面积<4个正方形的面积
2r2<S圆<4r2
师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。
(平板电脑出示题目和选项:那么圆的面积与它的'r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?
A:圆的面积是它的r2的3倍
B:圆的面积是它的r2的3.5倍
C:圆的面积是它的r2的π倍
D:圆的面积是它的r2存在其他的倍数关系
D:圆的面积与它的r2不存在固定的倍数关系)
师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)
师:有30%的同学认为圆的面积是它的r2的3倍
,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!
【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2
r2与4
r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。
三、启发探究,尝试验证
(一)数格子验证
师:谁来说说你的想法?
(预设)生:可以利用数格子的方法。
(学生的课前研究单上有一个半径是3厘米的圆)
(预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。
师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?
(预设)生:有,这些不满格的要估算。
师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。
(预设)生:会,因为这样需要估算的面积就会越少,所以更准确。
(课件展示)
师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。
师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子
极限思想)
师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?
【设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。
(二)“对折”验证
(预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。
师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?
(预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。
师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?
(预设)生:再对折。
师:折一折,看一看,这条边是不是更直了,再对折看看
(预设)生:太小了,折不了,
师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)
师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。
(预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。
师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)
师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。
【设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。
(三)等积转化验证
师:还有其他的思路吗?
(预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。
师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化
、推导)
师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的剪拼,请以小组为单位展开探索
活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。
2.比一比,拼成的图形中哪一个更接近于我们学过的图形。
(学生在小组内操作的画面在讲台的一体机中流动显示)
师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)
(预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。
师:为什么会最直呢?
(预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。
师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)
师:谁来讲讲发现。
(预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。
师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)
我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)
【设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。
师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。
(预设)生:自己来。
师:真的,我就站在旁边,有困难就举手。
四、寻找联系、推导公式
要求:
想一想:近似长方形的长和宽与圆的什么有关呢?
试一试:把推导的过程写下来。
师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。
学生分享:
(预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?
(预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。
【设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。
师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。
师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,
师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
(板书)
S长方形=长×宽
S圆=周长的一半×半径=C÷2×r=2πr÷2×r=πr2
师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝技
“割圆术”请看。
五、感受数学文化的魅力
(展示魏晋数学家刘徽割圆术视频)
师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。
【设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】
六、巩固知识,实际应用
师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)
1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?
2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?
七、全课总结,课堂延伸
师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)
(预设)生:S圆=πr2
、转化、化曲为直、极限……
师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)
师:对于圆的面积你有什么新的思考。
(预设)生:圆的面积还有其他的推导方法吗?
师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。
八、布置作业
书本第68页做一做的第一题。
(题目:一个圆形茶几的直径是1M,它的面积是多少平方米?)
2、书本71页第4题。
(题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)
3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。
九、板书设计
附录:《课前导学案》
《圆的面积》课前小研究工作纸
班别:
学号:
姓名:
同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……
同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)
2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?
圆的面积小于于()个小正方形的面积
我们可以这样分析:
圆的面积大于()个小正方形的面积
()<圆的面积<()
3、我们还可以通过数格子的办法数出圆的面积,试试看吧!
图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。
(为了方便数数,你可以在格子中写数字或作记号)
4、圆可以转化成我们学过的图形吗?
(1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?
(2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。
圆的面积教案3
教学目标:
1、掌握简单组合图形分解和面积的求法;
2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;
3、渗透图形的外在美和内在关系.
教学重点:简单组合图形的分解.
教学难点:对图形的分解和组合.
教学活动设计:
(一)知识回顾
复习提问:1、圆面积公式是什么?2、扇形面积公式是什么?如何选择公式?3、当弓形的弧是半圆时,其面积等于什么?4、当弓形的弧是劣弧时,其面积怎样求?5、当弓形的弧是优弧时,其面积怎样求?
(二)简单图形的分解和组合
1、图形的组合
让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.
2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的'图形(阴影部分)的面积.
以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用.
归纳交流结论:
方案1.S阴=S正方形-4S空白.
方案2、S阴=4S瓣=4 (S半圆-S△AOB)
=2S圆-4S△AOB=2S圆-S正方形ABCD
方案3、S阴=4S瓣=4 (S半圆-S正方形AEOF)
=2S圆-4S正方形AEOF =2S圆-S正方形ABCD
方案4、S阴=4 S半圆-S正方形ABCD
……………
反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律.
练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?
分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.
解:连结AO,设P为其中一个三等分点,
连结PA、PO,则△POA是等边三角形.
.
∴
说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.
练习2:教材P185练习第1题
例5、 已知⊙O的半径为R.
(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;
(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).
例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能力.
说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值.从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积
(三)总结
1、简单组合图形的分解;
2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.
3、进一步理解了正多边形和圆的关系定理.
(四)作业 教材P185练习2、3;P187中8、11.
探究活动
四瓣花形
在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图 (1)所示.
再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图 (12)所示.
探讨:(1)两图中的圆弧均被互分为三等份.
(2)两朵“花”是相似图形.
(3)试求两“花”面积
提示:分析与解 (1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°.
从而,∠ADP=30°.
同理∠CDQ=30°.故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分点.
由对称性知,四段弧均被三等分.
如果证明了结论(2),则图 (12)也得相同结论.
(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图 (1)的缩影.显然两“花”是相似图形;其相似比是AB ﹕EF =﹕1.
(3)花形的面积为: , .
圆的面积教案4
教学目标:
1.理解圆柱表面积的含义。
2.掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。
3.能灵活运用求表面积的有关知识解决一些简单的实际问题。
教学重点:理解求圆柱的表面积的计算方法并能正确计算。
教学难点:灵活运用表面积的有关知识解决实际问题。
教学方法:探索发现,归纳总结,实际应用
学法指导:小组合作,探究发现
教学准备:
课件
圆柱模型
教学过程:
一、激情导思(5分)
1、填空
(1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。
(2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。
(3)圆柱的侧面积=
2、求下面各圆柱的侧面积。(只列式,不计算)
①c=9.42厘米,h=5厘米。
②d=8米,h=3米。
③r=2分米,h=6分米。
二、探究新知(15分)
小组交流:
1、圆柱的表面积怎么计算?
2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?
3、归纳总结:
(1)s表面积=s侧面积+2s底面积
(2)烟囱表面积=侧面积
(3)水桶表面积=侧面积+一个底面积
(4)油桶表面积=侧面积+两个底面积
4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少平方分米的铁皮?
(1)学生独立尝试解决
(2)全班交流:
油桶的`侧面积:3.14×4×6=75.36(平方分米)
油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)
油桶的表面积:75.36+25.12=100.48(平方分米)
答:做这个油桶至少需要100.48平方分米的铁皮。
三、课内练习:
1、数学书33页第2题求表面积并填表
2、计算下现各圆柱的表面积。(图中单位:厘米)
四、拓展应用
3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少平方米的铁皮?
4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
5、数学书33页第6题
四:总结:
1、圆柱表面积的有关知识,在实际应用时要注意什么呢?
应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。
五、布置作业(8分)
数学书33页第3、4、5题
板书设计: 圆柱的表面积
例2:油桶的侧面积:3.14×4×6=75.36(平方分米)
油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)
油桶的表面积:75.36+25.12=100.48(平方分米)
答:做这个油桶至少需要100.48平方分米的铁皮。
圆的面积教案5
教学目标
(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。
(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。
教学重难点
教学重点:组合图形的认识及面积计算。
教学难点:对组合图形的分析。
教学工具
多媒体课件,各种基本图形纸片
教学过程
一、创设情境,谈话引入
同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)
师:这些图片的'设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)
师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究
1、教师出示例3的两幅图并出示自学提示出示自学提示:
(1)上面两幅图有什么不同之处?
(2)右图中的正方形的对角线和圆得直径有什么关系?
(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?
2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动
生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。
生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积
( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )
师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:
左图;(2r)-3.14r =0.86r
右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致
答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。
四、总结引导,知识生成这节课你有什么收获?
师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业
七、作业布置P73第10、11、
课后小结
这节课你有什么收获?
课后习题
1、出示教材P70做一做
2、完成教材P72第9题
板书
含有圆的组合图形的面积
左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )
S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )
4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )
圆的面积教案6
教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。
教学目标:
⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。
⒊渗透转化的数学思想。
教学重点:圆面积的含义。圆面积的推导过程。
教学难点:圆面积的推导过程。
教学过程:
一、复习。
1、已知r,周长的一半怎样求?
2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这
些图形的面积计算公式。
s=abs=a2s=ahs=ahs=(a+b)h
二、新课。
1、什么是圆的`面积?(出示纸片圆让生摸一摸)
圆所占平面大小叫做圆的面积。
2、推导圆的面积公式。
(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?
若分的分数越多,这个图形越接近长方形。
(1)找:找出拼出的图形与圆的周长和半径有什么关系?
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长宽
所以:圆的面积=圆的周长的一半圆的半径
S=r
S圆=r=r2
3、你还能用其他方法推算出圆的面积公式吗?
(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。
因为:三角形面积=底高
圆面积=
=rr
=r2
(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,
因为:平行四边形面积=底高
圆面积=r
=r8
=r2
还可以取3份、4份等,同学们可以一一推算。
三、运用知识解决实际问题。
1、例1一个圆的直径是20m,它的面积是多少平方米?
已知:d=20厘米求:s=?
r=d2202=10(m)
s=Лr2
3。14102
=3。14100
=314(平方厘米)
2、根据下面所给的条件,求圆的面积。
r=5cmd=0。8dm
3、解答下列各题。
(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?
四、作业。
课本P70第1、5题。
圆的面积教案7
教材分析:
圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。
教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的。推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的'问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
一、回顾旧知,引出新知
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法
二、创设情境,提出问题
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)
三、探究思考,解决问题
1、让学生估计圆的面积大小
(1)与同桌说一说你是怎么估的
(2)汇报
(3)老师引导有没有更好的方法
2、探索圆面积公式
(1)学生操作
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公式,并说出你的理由。
(6)总结:
1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
四:实践应用
圆的面积教案8
设计说明
1.利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2.重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
课前准备
教师准备 PPT课件
学生准备 圆片 剪刀
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1.课件演示自动旋转喷灌装置在灌溉农田的`生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]
3.探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
圆的面积教案9
【教学内容】
圆的面积
【教学目标】
知识与技能:通过操作,使学生理解圆的面积公式推导过程,掌握求圆的面积的方法并能正确计算。
过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
情感、态度与价值观:培养学生的空间观念。
【教学重难点】
重点:
1、理解圆的面积公式的推导过程。
2、掌握圆的面积的计算公式,能够正确地计算圆的面积
难点:理解圆的`面积公式的推导过程。
【导学过程】
【知识回顾】
1、还记得这些平面图形的面积计算公式吗?
2、平行四边形的面积公式推导过程还记得吗?
我们是通过剪拼的方法把它转化成长方形的。
【新知探究】
(一)、定义:
1、请你摸一摸哪里是圆的面积?
2、师:圆所占平面的大小就是圆的面积。
引导学生操作:
师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径)
生:(圆的大小由直径或半径决定。)沿直径或半径剪。
师剪第一刀,再问:第二刀怎么剪?
师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的方便,我们把圆平均分成多份。
将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。
师:随着等分份数的不断增加,你有什么发现吗?
A:随着等分份数的不断增加,曲线越来越直。
B:随着等分份数的不断增加,每一小份越来越接近三角形。
(三)拼摆推导面积公式。
1、拼摆
师:把圆转化成什么图形?我们来试一试。
学生操作,演示学生的作品。
师:转化后的图形面积与圆的面积有什么关系?面积不变。
课件出示:把圆等分成不同等份时的图形的趋势。
2、推导面积公式
小组讨论:长方形各部份相当于圆的什么?
请你推导圆的面积公式。
学生汇报:(2~3名学生说,老师说,全班说推导过程)
(4)学生齐读圆面积公式(S=πr2)。并说说圆面积的大小与什么有关?(半径)给直径怎办?(先求出半径,再求面积)
【设计意图】在这个环节教师成为学生的学习伙伴,在教师的引导和启发中,让每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。创造一个和谐、高效的学习氛围。
【知识梳理】
本节课学习了什么知识?
【随堂练习】
1、根据下面所给的条件,求圆的面积。
(1)、半径2分米
(2)、直径10厘米
2、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?
3、判断对错:
(1)圆的半径越大,圆所占的面积也越大。()
(2)圆的半径扩大3倍,它的面积扩大6倍。()
圆的面积教案10
第一课时
教学内容
圆的面积
教材第67、第68页的内容。
教学要求
1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。
2.培养学生运用转化的思想解决问题的能力。
重点难点
重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。
难点:理解圆的面积公式的推导过程。
教具学具
实物投影,各种图形的纸片。
教学过程
一导入
1.我们学过哪些平面图形的面积公式?
2.长方形、平行四边形和三角形的面积公式分别是什么?
3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。
二教学实施
1.明确圆的面积的概念。
(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?
学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。
(2)圆的大小是由什么决定的?
(3)展示由“曲”变“直”的渐变图。
引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。
2.学生动手操作,推导圆的面积公式。
为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,
(1)指导学生动手摆学具,并思考几个问题:
你摆的是什么图形?
你摆的图形的面积与圆的面积有什么关系?
所摆图形的各部分相当于圆的什么?
你如何推导出圆的面积?
(2)学生动手摆学具,然后发言。
拼成长方形:
老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。
出示教材第67页上面的图加以说明。
拼成的近似长方形的长和宽与圆的各部分有什么关系?
从图中可以看出圆的半径是r,长方形的长是πr,宽是r。
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。
3.利用公式计算圆的面积。
出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?
指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。
板书:20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:铺满草坪需要2512元。
老师强调指出:列出算式后,要先算平方,再与π相乘。
三课堂作业新设计
1.直接写出得数。
22= 32= 42= 52= 62= 72=
82= 92= 102= 0.22=0.72= 0.92=
2.求下面各圆的面积。
3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?
4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?
四思维训练
计算阴影部分的面积。(单位:分米)参考答案
课堂作业新设计
1.491625364964811000.040.490.81
2.12.56平方分米28.26平方分米1256平方厘米28.26平方米
3.28.26平方分米
4.1.1304平方米
思维训练
3.44平方分米
板书设计
圆的'面积
长方形的面积=长×宽
↓ ↓↓
圆的面积=πr×r=πr2
20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:铺满草坪需要2512元。
备课参考教材与学情分析
本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
课堂设计说明
1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。
2.教学时,强调知识迁移的过程。
平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。
3.组织学生观察猜想。
先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。
圆的面积教案11
教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的'面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
圆的面积教案12
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其
用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的.什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
等等
刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:分米) d=6(单位:分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考题:
已知正方形的面积是18平方米,求圆的面积。(如图)
课堂教学设计说明
1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
圆的面积教案13
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的.关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点: 圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
圆的面积教案14
教材分析
圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。
学情分析
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的.归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。
教学目标
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确的计算圆的面积。
2、理解圆的面积公式的推导过程,理解转化的数学思想。
3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重点和难点
重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。
难点:理解圆的面积公式的推导过程,掌握转化的数学思想。
圆的面积教案15
教学目的:
1、使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、激发学生参与整个课堂教学活动的兴趣,让之在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。
3、培养学生进行讨论、操作、观察、比较、分析和概括的基本能力。
4、渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:圆面的割补及圆面积计算公式的推导。
教学难点:极限思想的渗透及圆面积公式的推导。
教具学具:多媒体课件;每人一把剪刀,4张圆纸片,1平方厘米的小正方形若干。
教学过程:
一、认识圆面积的内涵——提出问题
师:你认识圆吗?你已经知道了圆的那些知识?(生答。)回顾以前学的平面图形,你还想知道圆的什么知识?(圆的面积怎样求)
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?(教具:大圆)现在你能说出圆的面积指的是什么吗?
师:对,圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。
揭示课题:圆的面积
二、讨论操作——分析问题
1、想想猜猜,估计大小
先请看,这是一个圆,我们以它的半径为边画一个正方形。
媒体显示:
提问:正方形的面积怎样表示?(板书:r2)那么,请你想一想,与正方形比较一下,估计圆面积的范围?大约是正方形面积的多少倍呢?(老师把学生估计的答案都写在黑板上。)
师:很显然,猜想只能是个大概,要准确地求出圆的面积,还必须找到科学的方法才行。
2、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。
如想不出就回忆长方形、平行四边形、三角形的面积公式推导过程。
如有学生想出就让学生举手谈设想。①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
点出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
3、分组操作,反思求悟
把学生分组根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况,让学生在视屏展示台上展示自己的做法。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
4、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪、拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
媒体出示大小不一的'两个圆(动态显现画的过程)。哪个面积大?为什么?也就是说圆的面积与什么有关?
得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。(学生还是很难剪拼出。如有拼出的就让他起来介绍剪拼方法,并在视屏展示台上展示;如没有教师就引导等分剪拼。)
看来剪和拼还很有点难度,让老师和你一起来研究探讨吧。
5、学生尝试加媒体显示,研究转化过程
首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。
(1)四分法 全体学生在老师的或学生的提示下剪、拼,然后根据情形实物投影、媒体显示。认识拼后有两条边直的,但是上下却凹凸不平弯弯曲曲,不过有点长方形的轮廓。
(2)八分法 让学生在四分法的基础上剪拼,再媒体显示,比较与四分法时的变化。让学生认识到与刚才拼成的差不多,但上下平多了,像长方形了。
(3)十六分法 直接媒体显示,上下更平,更像长方形 。
讨论:如果要让上下完全平,该怎么办呢?
媒体显示:三十二等分,对插。比刚才十六等分怎样?(更平更直,简直就是长方形。)
让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成长方形。
提问:谁能指出圆的边在长方形的什么地方?(学生指,在此作详细的指导。)
三、转化成长方形,研究推出圆面积公式——解决问题
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了长方形,大家现在能够找到圆面积的计算方法吗?
2、学生合作探究,推导公式。
(1)讨论探究,出示提示语:
长方形的长相当于圆的,宽相当于圆的?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)媒体演示公式推导过程(重点详细讲解。)
长方形的面积= 长 × 宽
圆的面积=圆周长的一半 × 半径
S = πr(C/2) r
3、揭示字母公式,验证猜想
S = π r2
让学生齐读公式,提问验证:这说明“S圆”是“r2”的多少倍?(板书:π≈3.14)
提问:要求圆的面积只要知道什么就行?(半径r)
四、在实践中巩固——应用问题
1、教学例3
一个圆的半径是5厘米,它的面积是多少平方厘米?
2、练习:
从自己身边找一个圆形物体,请你想办法求出它的面积。
五、课堂总结,渗透学法——研究性学习
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考及多媒体的帮助,把圆转化成已经学的长方形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
圆的面积教学反思
中塘小学:向庆航
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:
一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性。
教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓
三、演示操作,加深理解
生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。 平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πr h=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r =πr2。 此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
【圆的面积教案】相关文章:
圆的面积教案02-28
圆的面积教案02-10
圆的面积教案人教版09-15
数学圆的面积教案02-15
圆的面积教案最新05-30
人教版圆的面积教案11-27
圆的面积教案15篇05-09
圆扇形弓形的面积教案10-01
圆的面积教学设计教案09-30
圆的面积教案(精选20篇)11-07