六年级数学上册第四单元教案

时间:2023-11-20 18:07:49 教案 我要投稿
  • 相关推荐

六年级数学上册第四单元教案

  在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。写教案需要注意哪些格式呢?以下是小编精心整理的六年级数学上册第四单元教案,仅供参考,大家一起来看看吧。

六年级数学上册第四单元教案

六年级数学上册第四单元教案1

  教学内容整理和复习

  教学目标⒈根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。

  ⒉培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

  ⒊培养学生认真审题的良好学习习惯。

  教学重难点重点:灵活运用周长或面积公式解决实际问题。修改意见

  教学过程一、周长与面积的区别。

  1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?

  2、计算下题。求出它的周长与面积。

  (1)学生动手计算。

  (2)周长与面积有什么不同?

  概念不同,计算公式不同,单位不同。

  3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。

  (错。周长的长短和面积的大小没有必然的联系。)

  二、运用所学知识解决实际问题。

  1、一个圆形花坛,直径是4米,周长是多少米?

  3.14×4=12.56(米)

  2、一个圆形花坛,周长是12.56米,直径是多少米?

  12.56÷3.14=4(米)

  3、一个圆形花坛的半径是2米,它的面积是多少平方米?

  3.14×22=12.56(平方米)

  4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?

  r=12.56÷(2×3.14)= 2(米) 3.14×22=12.56(平方米)

  5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

  ⑴ 3.14×( )2=28.26(平方米)

  3.14×( )2=12.56(平方米)

  28.26-12.56=15.7 (平方米)

  ⑵ - = 5(平方米)

  3.14×5=15.7(平方米)

  6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

  7、一个圆形餐桌面直径是2,它的周长多少米?它的面积是多少米?如果一个人需要0.5M宽的.位置就餐,这张餐桌大约能坐多少人?+

  三、综合练习。

  1、判断对错,

  (1)圆的半径都相等。 ( )

  (2)在同圆或等圆中圆周长约是半径的6.28倍。 ( )

  (3)半圆的周长是圆周长的一半。( )

  2、只列式不计算。

  (1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

  (2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

  (3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?

  3、说一说下面各题的解题思路。

  (1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

  (2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是

  多少平方米?

  布置作业

  练习十七1—3,思考第4题。

六年级数学上册第四单元教案2

  单元目标:

  1、认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

  2、学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

  3、独立自学,使学生初步认识弧、圆心角和扇形。

  4、使学生认识思对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

  5、通过介绍圆周率的史料,使学生受到爱国主义教育。

  单元重点:

  1、认识圆和轴对称图形;

  2、掌握圆的周长和面积的计算公式。

  单元难点:

  理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

  1.认识圆

  (1)圆的认识

  目标:

  1、学生认识圆,掌握圆的特征,理解直径与半径的关系。

  2、会使使用工具画圆。

  3、培养学生观察、分析、综合、概括及动手操作能力。

  重点:

  圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

  教学难点:画圆的方法,认识圆的特征。

  教学过程:

  一、自学

  1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

  长方形正方形平行四边形三角形梯形

  2、示圆片图形:(1)圆是用什么线围成的?(曲线图形)

  3、举例:生活中有哪些圆形的物体?

  二、议学

  (一)认识圆的特征。

  1、学生自己在准备好的纸上画一个圆,并动手剪下。

  2、动手折一折。

  (1)折过2次后,你发现了什么?

  (两折痕的交点叫做圆心,圆心一般用字母O表示)

  (2)再折出另外两条折痕,看看圆心是否相同。

  3、认识直径和半径。

  (1)将折痕用铅笔画出来,比一比是否相等?

  (2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

  (3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

  4、讨论:

  (1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

  (2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

  (3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

  在同一个圆里,有无数条半径,且所有的半径都相等。

  5、直径与半径的关系。

  (1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

  得出结论:在同一个圆里。

  6、巩固练习:课本58“做一做”的第1-4题。

  (二)画圆

  1、介绍圆规的各部分名称及使用方法。

  2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

  三、悟学

  (一)巩固练习

  1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

  2、判断,并说为什么。

  (1)半径的长短决定圆的大小。 ( )

  (2)圆心决定圆的位置。 ( )

  (3)直径是半径的2倍。 ( )

  (4)圆的半径都相等。 ( )

  3、思考题:在操场如何画半径是5米的大圆?

  (二)课堂总结:经过今天的学习,你知道了什么?还有什么疑问?

  (三)作业:书P60第1-4题。

  (2)轴对称图形

  教学目标:

  1、在前面所学得成轴对称的平面图形的.基础上,教学认识圆的对称轴。

  2、学生认识到圆是轴对称图形,且对称轴有无数条。

  3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识。

  教学重点:圆的对称轴。

  教学难点:画对称轴的方法。

  教学过程:

  一、自学

  1、举例说出轴对称的物体。如:蝴蝶、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

  2、观察、概括。

  如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

  二、议学

  1、你能分别画出下面两个圆的对称轴吗?你能画出几条?

  2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

  3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

  三、悟学

  1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

  2、小结:对称轴两侧相对点到对称轴的距离相等。

  3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

  4、下面的图形是轴对称图形吗?它们各有几条对称轴?

  长方形等边三角形等腰三角形正方形圆环形

  四、总结:

  今天我们学习了哪些知识?

  五、布置作业:

  练习十四第5—9题。

  教学追记:

  本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了课件与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己来讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。

六年级数学上册第四单元教案3

  一、教学内容

  比的基本性质。(教材第50页)

  二、教学目标

  1、掌握比的基本性质。

  2、理解知识间的内在联系,渗透类比思想。

  三、重点难点

  重难点:理解并掌握比的基本性质。

  四、教学过程

  一、复习引入

  1、复习问答。

  师:什么叫比和比值?(点名学生回答)

  师:比和分数、除法有什么关系?

  引导学生回忆比和分数、除法的关系,可以结合算式或表格回答。

  师:商不变的规律和分数的基本性质各是什么?

  引导学生回忆商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  2、2/6,4/12,8/24这三个分数的大小相等吗?为什么?(课件出示题目)

  引导学生根据分数的基本性质思考,发现都能化简为1/3。

  3、引出新课。

  师:在除法中有商不变的规律,在分数中有分数的基本性质,那么在比中是否也有类似的性质呢?这节课我们就来探究一下比的基本性质。(板书课题:比的基本性质)

  二、学习新课

  1、启发引导,发现问题。

  把6/8,12/16改写成比的形式。(课件出示题目,点名学生回答)

  师:这两个比相等吗?

  引导学生通过求比值得出两个比相等。学生回答后,教师板书:

  6∶8=6÷8=6/8=3/4

  12∶16=12÷16=12/16=3/4

  6∶8=12∶16=3∶4。

  师:从左往右或从右往左观察这两个比,你发现什么变了?

  引导学生发现比的前项、后项都发生了变化。

  2、观察比较,发现规律。

  (1)利用比和除法的关系来研究比中的规律。

  组织学生将比转化成除法,通过商不变的规律来认识比中的规律。

  ①6∶8=12∶16

  学生讨论交流,汇报结果,根据学生的汇报,课件演示:

  6÷8=(6×2)÷(8×2)=12÷16

  ↓ ↓ ↓

  6∶8=(6×2)∶(8×2)=12∶16

  师:认真观察,你能用一句话概括其中的规律吗?

  引导学生得出规律:比的前项和后项同时乘相同的数,比值不变。

  ②6∶8=3∶4。

  学生讨论交流,汇报结果,根据学生的汇报,课件演示:

  6 ∶8=(6÷2) ∶(8÷2)=3 ∶4

  ↑ ↑ ↑

  6 ÷8=(6÷2) ÷(8÷2)=3 ÷4

  师:同样地,你能用一句话概括其中的规律吗?

  引导学生得出规律:比的前项和后项同时除以相同的数,比值不变。

  (2)利用比和分数的关系来研究比中的规律。

  组织学生独立思考探究。(教师巡视,进行个别辅导,指名汇报)

  3、归纳总结,概括规律。

  (1)师:刚才我们根据比和除法、分数的关系进行探究,发现比也存在着一种规律,谁能把其中的规律总结出来呢?

  组织学生独立思考后小组内交流。

  引导学生初步归纳得出:比的前项和后项同时乘或除以相同的数,比值不变。

  (2)师:相同的数是什么数都行吗?同时乘或除以0可以吗?

  引导学生根据比与分数、除法的关系得出相同的数不可以是0。

  (3)引导学生完整归纳总结比的基本性质。(板书性质)

  三、巩固反馈

  1、完成教材第53页“练习十一”第4题。(点名学生回答,并说一说同乘或除以几)

  第4题:(1)98∶100 (2)12∶100

  (3)110∶100

  (课件出示题目,学生独立完成,教师订正)

  2、7∶12的前项增加14,要使比值不变,后项应该加上 24 。

  3、5∶6的后项增加24,要使比值不变,前项应乘 5 。

  四、课堂小结

  通过本节课的学习,你知道比的基本性质是什么吗?

  板书设计

  比的基本性质

  6∶8=6÷8=6/8=3/4

  12∶16=12÷16=12/16=3/4

  6∶8=12∶16=3∶4

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  五、教学反思

  1、本堂课是一节充分体现以学生为主的课。教学中,由“除法中商不变的规律”和“分数的基本性质”就能自然而然地联想到是否也存在着“比的基本性质”。对此,不能束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后准确地得出“比的基本性质”。

  2、我的补充:

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  六、备课资料参考

  典型例题准备

  【例题】甲数与乙数的比是3∶4,乙数与丙数的'比是6∶7,甲数与丙数的比是多少?甲数、乙数与丙数三个数的连比是多少?

  分析:甲数∶乙数和乙数∶丙数中的乙数是同一个量,但在每个比中所占的份数不同,可以根据比的基本性质将乙数所占份数化成相同。甲数∶乙数=3∶4,乙数∶丙数=6∶7,可以将乙数所占的份数化为4和6的最小公倍数。

  解答:甲数∶乙数=3∶4=(3×3)∶(4×3)=9∶12

  乙数∶丙数=6∶7=(6×2)∶(7×2)=12∶14

  所以甲数∶丙数=9∶14,甲数∶乙数∶丙数=9∶12∶14。

  解法归纳:解决连比问题,主要运用转化方法,根据比的基本性质把同种量转化成相同的份数。

  相关知识阅读

  奇妙的8∶11

  人们都见到过稻麦一类的农作物,在快要收割的时候,它们顶着沉甸甸的穗子,支持着饱满穗子的却是一根空心的茎。为什么一根空心的茎会有这样大的能耐呢?

  科学家根据材料力学理论推算:一根空心管子的内径和外径之比,如果是8∶11的话,最不容易弯曲。生物界在进化过程中,为了求得生存,动物的骨、植物的茎等都选择空心,而且不论粗细如何,内径和外径之比大约都是8∶11,这不是奇妙的巧合,而是大自然优胜劣汰的结果。科学家就利用这个数据,为人类造福。例如水泥制成的空心电线杆、自行车的车身架等,都是利用这个数据,以达到耗费最少的材料而获得最强的坚固性的目的。

六年级数学上册第四单元教案4

  一、教学内容

  比的应用的练习课。(教材第55~56页练习十二第3~7题)

  二、教学目标

  1.复习巩固按比分配问题的解题方法。

  2.进一步培养学生应用知识解决实际问题的能力。

  三、重点难点

  重难点:会灵活运用按比分配问题的解题方法解决实际问题。

  教学过程

  一、基础练习

  1.师:比的意义和基本性质是什么?(点名学生回答)

  2.教材第55页练习十二第5、6题。

  (学生独立完成,集体订正)

  3.师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

  引导学生回顾按比分配的两种解题方法。

  二、指导练习

  1.教学教材第55页练习十二第3题。

  (1)组织学生观察图画,理解题意,了解信息。

  (2)组织学生小组讨论,如何解决问题。

  教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

  (3)交流后,学生独立完成,集体订正。

  2.教学教材第55页练习十二第4题。

  (1)学生读题,理解题意。

  (2)师:已知总棵树和每班的人数,要求各班栽的棵数,应先求出什么?

  引导学生明确应先求出各班的人数比,人数比等于棵数比,然后根据按比分配求出各班栽的棵数。

  教师提示:两个数的按比分配问题的解题方法同样适用于三个及以上的数的比。

  (3)学生独立完成,集体订正。

  3.教学教材第56页练习十二第7题。

  (1)学生读题看图,理解题意。

  (2)师:西红柿的面积可直接用乘法求得,黄瓜和茄子的面积可以怎样求得?

  组织小组交流讨论,学生可能有两种回答:

  ①先求出种黄瓜和茄子的总面积。再根据按比分配问题的解题方法解答。

  ②先求出黄瓜和茄子占总面积的比,然后用乘法直接根据按比分配分别求出黄瓜和茄子的面积。

  (3)学生独立完成,点名学生回答,根据回答板书:

  (方法一)西红柿:800×2/5=320(m2)

  黄瓜和茄子:800-320=480(m2)

  黄瓜:480×2/(2+1)=320(m2)

  茄子:480×1/(2+1)=160(m2)

  (方法二)西红柿:800×2/5=320(m2)

  黄瓜占总面积:1-2/5×2/(2+1)=2/5

  茄子占总面积:1-2/5×1/(2+1)=1/5

  黄瓜:800×2/5=320(m2)

  茄子:800×1/5=160(m2)

  三、巩固练习

  1.完成教材第56页“练习十二”第8题。(要求学生提出不同的问题并解答)

  (答案不唯一)我和爸爸的年龄比:12∶38=6∶19;爸爸与妈妈的年工资比:36000∶(20xx×12)=3∶2。

  2.完成教材第56页“练习十二”第9x题。(点名学生板演,其余独立计算,集体订正)

  150 t∶60 t∶15 t=10∶4∶1

  3.完成教材第56页“练习十二”第10x题。(学生独立完成,同桌订正)

  水泥:20×2/(2+3+5)=4(t)

  沙子:20×3/(2+3+5)=6(t)

  石子:20×5/(2+3+5)=10(t)

  4.完成教材第56页“练习十二”第11x题。(小组讨论解决方法并汇报)

  120÷4=30(cm)

  长:30×3/(3+2+1)=15(cm)

  宽:30×2/(3+2+1)=10(cm)

  高:30×1/(3+2+1)=5(cm)

  四、课堂小结

  你有哪些收获?还有什么不明白的地方?

  板书设计

  比的'应用(练习课)

  第7题:

  (方法一)西红柿:800×2/5=320(m2)

  黄瓜和茄子:800-320=480(m2)

  黄瓜:480×2/(2+1)=320(m2)

  茄子:480×1/(2+1)=160(m2)

  (方法二)西红柿:800×2/5=320(m2)

  黄瓜占总面积:1-2/5×2/(2+1)=2/5

  茄子占总面积:1-2/5×1/(2+1)=1/5

  黄瓜:800×2/5=320(m2)

  茄子:800×1/5=160(m2)

  答:西红柿的种植面积是320 m2,黄瓜的种植面积是320 m2,茄子的种植面积是160 m2。

  教学反思

  1.本次练习,总的来说学生都能熟练地进行列式计算,但他们还没有达到真正理解利用比的基本性质进行思考解题。究其原因,大概是和一些学生的惰性思维有关。一些学生总认为只要会做就行,没有必要去深究为什么,以至于当新型问题出现时,他们往往不知如何下手。为了改变这种思想,还需要在教学中多注意方法的引导和理解,让其熟练掌握一般方法,能够以不变应万变地去解题。

  2.我的补充:

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  备课资料参考

  典型例题准备

  【例题】甲、乙两个仓库有很多货物,先从甲仓库运走80 t货物,甲仓库的剩余货物与乙仓库货物的质量比为3∶2;再从乙仓库运走55t货物,乙仓库剩余货物的质量是甲仓库剩余货物的质量的1/4。甲、乙两个仓库原来共有货物多少吨?

  分析:不变量:从甲仓库运走80吨货物,甲仓库剩余货物的质量不变。

  前后变化的分率:

  (1)原来乙仓库货物的质量是甲仓库剩余货物质量的2/3;

  (2)从乙仓库运走55 t后,乙仓库剩余货物的质量是甲仓库剩余货物质量的1/4。

  对应量:甲、乙两个仓库货物质量变化的分率差的对应量是55 t。

  解答:甲仓库剩余的货物:55÷2/3-1/4=132(t)

  甲、乙原来共有货物:132+80+132×2/3=300(t)

  答:甲、乙两个仓库原来共有货物300 t。

  解法归纳:解决此类比与分率前后变化的问题,关键是抓住不变量,找出已知量对应的分率,从而用除法解决问题。

  相关知识阅读

  公侯伯子男,五四三二一。

  假有金五秤*,依率要分讫。

  【注释】:1秤=15斤,5秤=75斤。

  有公、侯、伯、子、男五等官员,想要根据官位高低来分75斤金子,按5∶4∶3∶2∶1的比分完。可以通过按比分配问题的知识求出每种官位分得金子的质量。

六年级数学上册第四单元教案5

  一、教学内容

  比的意义。(教材第48~49页)

  二、教学目标

  1.理解比的意义,掌握比的读、写及各部分名称。

  2.明确比与分数、除法的关系。

  3.会正确读、写任意相关联的两个量的比,掌握求比值的方法。

  三、重点难点

  重点:1.理解比的意义,能正确读、写比。

  2.掌握比的各部分名称及求比值的方法。

  难点:理解比与分数、除法的关系。

  教学过程

  一、情境引入

  (课件出示教材第48页的主题图)

  1.师:你从图中获得了哪些信息?有什么感受?(组织学生同桌交流,然后点名学生回答)

  2.师:图中展示的两面旗都是长15 cm,宽10 cm。我们可以怎样表示它们长和宽的关系呢?

  学生交流得出:

  (1)用比较多少的方法来表示:长比宽多5 cm,宽比长少5 cm。

  (2)用倍数关系来表示:长是宽的15/10倍,宽是长的10/15。

  3.引出新课。

  师:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)

  二、学习新课

  1.教学比的意义。

  (1)同类量的比。

  师:这两面旗的长和宽的倍数关系还可以用比来表示。长是宽的15/10倍,可以说长和宽的比是15比10。那么宽是长的10/15可以说成谁和谁的比是几比几呢?

  引导学生自己说出宽和长的比是10比15。

  教师小结:长和宽都是表示长度的量,属于同类量。所以无论是长和宽的比还是宽和长的比,都是两个长度的比,我们把这类比叫做同类量的比。

  (2)非同类量的比。

  课件出示:“神舟”五号进入运行轨道后,在距地350 km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252 km。

  ①师:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

  引导学生回答用“42252÷90”求出速度。

  ②师:除了用除法来表示路程和时间的关系外,我们也可以用比来表示,也就是飞船所行路程和时间的比是42252比90。因为这里的42252 km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的关系。

  (3)归纳比的意义。

  师:结合上面两个例子,你能说一说什么是比吗?

  学生试说,教师小结:两个数的比表示两个数相除。(板书比的意义,组织学生齐读)

  2.教学比的读、写法和各部分名称。

  (1)引导学生自学教材第49页上半页的内容。

  师:你学到了哪些比的.知识?

  组织学生讨论交流后汇报。根据学生的汇报,板书:

  (2)明确比值的求法和表示方法。

  师:用比的前项除以后项所得的商,叫做比值。例如这里的3/2。(板书:比值=比的前项÷比的后项)

  教师提示:比值通常用分数表示,也可以用小数或整数表示。

  3.教学比与除法、分数的关系。

  师:观察上面的式子,你能发现比与除法的关系吗?

  引导学生发现比的前项相当于被除数,比号相当于除号,比的后项相当于除数,比值相当于商。

  师:根据分数与除法的关系,比和分数又有什么关系呢?

  小组讨论,汇报交流。根据学生回答,课件演示下表:

  教师总结:比与除法、分数联系紧密,但又有区别。除法是一种运算,分数是一种数,比表示两个数之间的关系,各自的意义不同。所以在表述它们之间的关系时,要说“相当于”,而不能说成“等于”或“是”。

  三、巩固反馈

  1.完成教材第49页“做一做”第1、2题。(学生独立完成,点名学生回答)

  第1题:6 8 3/4 1.8 2.4 3/4

  第2题:1/8 4

  2.完成教材第52~53页“练习十一”第1、3、5题。(第1、5题学生独立完成,第3题点名学生板演,集体订正)

  第1题:(1)14 8 7/4

  (2)16 10 8/5 10 26 5/13

  (3)18 12 3/2

  第3题:5/9 15/4 7/9 1.6

  第5题:7∶5=1.4 2∶1=2

  23∶20=1.15

  菠菜的钙、磷含量比最高,茄子最低。

  四、课堂小结

  今天我们学到了什么知识?比的意义是什么?

  板书设计

  比的意义

  比的意义:两个数的比表示两个数相除。

  教学反思

  1.本节课的内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。这节课的知识点较多,有比的意义、读写以及各部分名称;有比值的概念及其求法;还有比与除法、分数的区别与联系等。针对本课内容的特点,在教学中,主要体现以下两个方面:

  一是通过讲导结合,理解比的意义。在学习比的意义的时候,考虑到学生对比缺乏认知,所以主要通过教师的“导”,引导学生明确:对两个数量进行比较,可以用除法,也可以用比,并通过同类量和不同类量的比,引出比的意义。

  二是注意学生自学能力的培养和小组合作学习的开展。在学习比的各部分名称及读法、写法时,采用了让学生看书自学的方式,在学习中通过探索问题、解决问题,达到掌握知识的目的。在学习比和除法以及分数关系的时候,采用小组合作学习的方式,让学生结合教材,围绕问题展开讨论,总结出三者之间的联系和区别。

  2.我的补充:

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  备课资料参考

  典型例题准备

  【例题】工人种植一批树苗,已种植的棵数与总棵数的比是2∶5,下午又种植了36棵,这时已种植的棵数与总棵数的比是5∶8。这批树苗共有多少棵?

  分析:根据比与分数的关系,可以将与比有关的问题转化为分数问题解答。

  已种植的棵数与总棵数的比是2∶5,也就是已种植的棵数是总棵数的2/5。又种了36棵后,已种植的棵数与总棵数的比是5∶8,即此时已种植的棵数是总棵数的5/8。所以36所对应的分率是5/8-2/5,即36是总棵数的5/8-2/5。求单位“1”,用除法计算。

  解答:36÷5/8-2/5=36÷9/40=160(棵)

  答:这批树苗共有160棵。

  解法归纳:把与比有关的问题转化为分数问题解决时,关键是根据已知比正确得出谁是谁的几分之几。

  相关知识阅读

  奇妙的比

  张扬和李明在争论一个问题。张扬说:“比的后项不能为0,可是,前几天中国女足还以3∶0的成绩战胜了美国女足。这里的比的后项就是0,为什么呢?”

  李明笑着说:“比赛中的3∶0,与表示倍数关系的比是两码事。虽然读法、写法都一样,可它们的意义不相同。表示倍数关系的两个数,也可以表述为两个数相除,又叫做两个数的比。由于除数是0没有意义,所以比的后项也不能是0。而比赛中记录的3∶0,不表示两个队得分的倍数关系,只表示比赛双方的进球的个数,只是借用了比的写法。”

  张扬佩服地点了点头。

六年级数学上册第四单元教案6

  1、教学目标

  1.在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。

  2.进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。

  3.向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。

  2、新设计

  1.串联信息,整合单元复习内容

  2.沟通联系,自主搭建知识网络

  3.聚焦对比,分析说理易混知识

  4.数形结合,提炼方法优化思路

  3、学情分析

  厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。

  4、重点难点

  教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。

  教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。

  5、教学过程

  5.1第一学时

  5.1.1教学活动

  活动1【导入】

  一、呈现信息,感受比的广泛应用

  师:同学们,这节课,我们一起来整理复习:比的`知识。(板书课题)整理复习:比

  师:首先,大家要明确:两个数的比表示什么?

  板书:比→相除

  师:来看看生活中一些比的例子:

  国旗的长和宽的比是3:2

  观音山梦幻陆世界,1张门票70元。总价和数量的比是70:1。

  爸爸体重和东东体重的比是60:35。

  深圳“世界之窗”,园中微缩景与实景的比为1:3。

  从厦门坐动车到福鼎,动车行驶路程和时间的比是426:2。

  一杯蜂蜜水,用蜂蜜和水按1:9调制而成。

  师:1:9什么意思?

  师:在比的应用中,可以将比转化为份数或分数。

  板书:比的应用份数分数

  活动2【讲授】

  二、信息分类,回顾比的相关知识

  师:这6条信息,你能分分类吗,可以分为几类,你是怎么想的?

  1.回顾比的两种不同类型

  预设分类方法1:前后项单位相同的一类;前后项单位不同的一类。

  师:利用比的方法,这里可以知道一个数是另一个数的几倍或几分之几。而两个不同类量的比,会产生一个新的量。

  2.总结求比值化简比的方法

  (1)师:还有其他分法吗?怎么想的?

  预设分类方法2:比的结果是最简比的一类,不是最简比的一类。

  (2)求比值、化简比的依据

  师:题中426:2和60:35不是最简单的整数比。通过这两个比,我们一起来复习下怎样求比值,怎样化简比?依据又是什么?

  (3)分析说理

  师:下面3题,做对了吗?请你分析说理。

  ①化简比32:16=32÷16=2

  ②化简比0.15:0.3=(0.15÷0.3):(0.3÷0.3)=0.5:1

  ③求比值0.75:=0.375÷0.8=0.46875

  小结:第3小题要根据数据特点灵活选择算法,简便些。

  (4)对比区分

  师:究竟,求比值和化简比有着这样的区别呢?

  师:是的,化简比的结果仍然是一个比,是最简单的整数比;而求比值的结果是一个数,可以是整数、小数或分数,而大家要注意区分。

  活动3【活动】

  三、沟通联系,搭建比的知识网络

  师:刚才,我们一起回顾了关于“比”的有关知识,但这样排列看起来有些零散。你们能重新整一整吗?好,请看小组合作任务:根据知识之间的联系将它们重新排列,形成知识的网络。

  师:哪一组的同学愿意来展示一下你们整理的成果?(学生上台来利用电子白板的拖拽功能,进行整理,形成关于比的知识网络)

  师:看,和前面零散的排列对比,你有什么感觉?

  活动4【活动】

  四、题组对比,提炼方法优化思路

  师:在之前学习的“比的应用”中,大家懂得可以把比转化成份数或分数。这里,第1个条件和所求问题都不变,第2个条件在不断变化,那你们会应用吗?动笔试一试吧,拿出个人学习单,只列式不计算。

  调制蜂蜜水,用蜂蜜和水按2:9调制而成。(),需要水多少毫升?

  ①如果调制220毫升蜂蜜水,列式:

  ②水比蜂蜜多用了140毫升,列式:

  ③蜂蜜用了20毫升,列式:

  (学生独立列式后)分别指名学生上台来利用电子白板,结合线段图,当小老师讲解分析:为什么这样列式?(学生互动交流)

  师:这里,题中所给的具体数量在不断变化,要正确解答,谁有什么好方法呢?

  板书:方法:找对应

  师:好方法就是解题的金钥匙!数学家华罗庚也说过:“新的数学方法和概念,常常比解决数学问题本身更重要。”

  活动5【练习】

  五、分层练习,训练思维培养能力

  练习(略)

  活动6【讲授】

  六、全课总结,互动畅谈学习收获

  师:上完这节复习课,你有哪些收获?能跟大家说说吗?或者还有什么问题还没弄明白,也也可以提出来,大家一起讨论。

六年级数学上册第四单元教案7

  教材分析

  《生活中的比》是在学生已经学过除法的意义,分数的意义以及分数与除法的关系的基础上学习的,教材密切联系学生已有的生活经验和学习经验。设计了比“速度”、“图形放大缩小”“水果价格”等情境,引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生体会引入比的必要性及比在生活中的'广泛存在。

  “比”在数学中是一个重要的概念,体会比的意义和价值是教材内容的核心思想。教材没有采取直接出示“比”的概念的做法,而是以系列情境为学生理解比的意义提供了丰富的直观背景和具体案例,教师要利用好这些情境,真正达到帮助学生理解比的本质的目的。

  学情分析

  有的学生在生活中已经接触或使用过比,并有一些相关的生活经验,但学生对比的理解仅仅停留在形式上,因此,教学力求通过具体的材料帮助学生达成对比的概念的真正理解。通过自己熟悉的有挑战性的问题喜欢的、探究的、合作的学习方式。因此教学设计充分考虑学生的特点,利用“苹果买卖”“图形放大缩小”等素材,设计了有挑战性的问题让学生思考、讨论,使学生在学习的过程中体会比的意义和价值。

  教学目标

  1、经历从具体情境中抽象出比的过程,理解比的意义。

  2、能正确读写比,会求比值,理解比与除法、分数的关系。

  3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。

  教学重点和难点

  重点: 理解比的意义。

  难点:了解比与分数、除法的关系

【六年级数学上册第四单元教案】相关文章:

数学第四单元教案01-17

数学第四单元除法的教案02-07

六年级语文上册第四单元教案12-27

第四单元单元复习教案06-15

六年级语文上册第四单元教案(精选10篇)11-09

二年级数学上册第四单元教案12-17

语文第四单元教案06-08

六年级数学下册第四单元教案文案10-11

三年级数学上册第四单元教案范文09-28