六年级数学教案

时间:2023-01-04 14:46:24 教案 我要投稿
  • 相关推荐

六年级数学教案(15篇)

  在教学工作者实际的教学活动中,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。教案要怎么写呢?以下是小编帮大家整理的六年级数学教案,仅供参考,欢迎大家阅读。

六年级数学教案(15篇)

六年级数学教案1

  教学目标

  1.进一步理解采用法定计量单位的重要意义.

  2.复习长度、面积、体积、质量、时间单位.

  3.复习各种计量单位间的进率.

  教学重点

  指导同学汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.

  教学难点

  掌握各种计量单位的实际大小及进率,正确使用计量单位.

  教学步骤

  一、直接导入.

  提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(同学自由回答)

  教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习量的计量.(教师板书课题)

  二、归纳整理.

  (一)启发同学回忆:我们学过了哪些量的计量?

  教师板书:

  长度 质量 时间

  面积

  体积(容积)

  (二)复习长度、面积、体积单位及进率.

  1.启发同学回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?

  2.启发同学回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间

  的进率是多少?

  同学讨论:相邻面积单位之间的进率为什么都是100?

  师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.

  3.启发同学回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?

  同学思考:相邻体积单位之间的进率为什么是1000?

  教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.

  4.练习.

  (1)在( )里填上适当的计量单位名称.

  一枝铅笔长176( ) 一个篮球场占地420( )

  一张课桌宽52( ) 一个火柴盒的体积是21( )

  一间教师的面积是48( ) 一种保温瓶的容量是2( )

  (2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?

  (3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?

  (三)复习质量单位.

  1.启发同学回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)

  2.练习.

  ①10麻袋大米约1( )

  ②l个鸡蛋约6.5( )

  ③1棵白菜约2.5( )

  ④1名六年级同学体重是40( )

六年级数学教案2

  教材说明

  综合应用“合理存款”是在完成了第六单元“百分数”的教学之后安排的,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识,并综合运用这些相关知识解决实际问题。通过这个活动,一方面可以使学生更多地接触实际生活中的百分数,认识到数学应用的广泛性;另一方面可以促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。

  “合理存款”活动共由以下四个部分组成。

  1.明确问题。

  本活动主要围绕:“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开的。该问题中蕴含着几个很关键的信息:本金、可存款年限以及资金用途。

  2.收集信息。

  明确问题后,需要收集与该问题相关的信息。教材中呈现了通过去银行咨询以及查阅相关规定的方式获得的信息:(1)人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率等。(2)教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。(3)国债也是免征利息所得税,有三年期和五年期的……

  3.设计方案。

  根据上述收集到的信息,让学生设计具体的储蓄存款方案。定期储蓄存款的方案可填在第111页第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

  4.选择方案。

  从上述各种可行的方案中选取收益,即化的方案进行合理存款,并计算出到期后总共的收入。

  教学建议

  1.这部分内容可用1课时进行教学。

  2.本活动涉及的调查与收集信息工作,老师可要求学生在课前完成。学生可以通过网络、电话以及银行咨询等多种渠道获得人民币储蓄、教育储蓄以及国债的利率和相关规定。

  3.课堂教学时,老师可结合要解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途。这可以促使学生整理信息时更有针对性,特别是为设计教育储蓄存款方案提供合理的理由。

  4.在明确学生已经收集到必需的信息之后,可让学生以小组合作学习的方式共同设计方案。教材第一张表格中给定期储蓄存款方案预留了三行,实际上学生在具体设计时可能不仅仅只有三种,如一年期存6次,二年期存3次,三年期存2次,先存五年期再存一年期……多种方案。老师对学生设计的不同方案要恰当的给予鼓励,不能不加指导让学生盲目地停留在对定期储蓄存款方案的罗列中。

  5.在对教育储蓄和国债方案的设计之前,建议老师先引导学生充分了解和明确收集来的关于教育储蓄和国债的相关信息与规定。例如:(1)20xx年发行的凭证式一期国债,三年期利率为3.14%,五年期利率为3.49%。(2)一年期、三年期教育储蓄按开户日同期整存整取定期储蓄存款利率计息,六年期按五年期整存整取定期储蓄存款利率计息;教育储蓄储户凭存折和学校提供的正在接受非义务教育的学生身份证明(以下简称“证明”)一次支取本金和利息,每份“证明”只享受一次优惠。

  6.教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,它们的收益会相对较高。但由于国债和教育储蓄对存期和提取具有一定地限制,所以为了实现本笔存款收益化,可能的方案主要有以下几种:(1)教育储蓄存六年。(2)先买三年期国债,到期后再买三年期国债。(3)先买三年期国债,到期后再存三年期教育储蓄。(4)先买五年期国债,到期后再存一年期教育储蓄。在连续存款的方案中,连续存款时仍然只存本金一万元,不包括已经获得的利息(具体见下表)。

  1.教师请各组同学选派代表,交流本小组选择的收益的方案,并具体算出到期的收入。这里需要说明的是,本活动在设计方案时国债利率均以20xx年发行的凭证式一期国债的年限和利率为准,教育储蓄也以当前的规定和利率为准。实际上,国债以及教育储蓄的利率在不同时期可能会有所调整,但无论利率如何变化,方案设计的思路是一致的。教学时老师可根据当时的情况进行具体的调整。

  2.教师在与全班同学共同反馈结果后,还可让学生充分讨论,如果自己有钱,想怎样投资,理由是什么,培养学生的投资意识。

六年级数学教案3

  教材分析:

  在学习本单元的内容之前,学生已经在第一、二学段学习了前后、上下、左右等表示物体具体位置的知识,也学习了简单的路线等知识。这些知识为学生进一步认识物体在空间的具体位置打下了基础。而本单元的学习则是第一、二学段学习内容的发展,它对提高学生的空间观念,认识生活周围的环境,都有较大的作用。

  教材从学生自己十分熟悉的座位表着手,通过说一说张亮的座位,引出第几组与第几个的话题。接着,再从第几组第几个引出抽象的数对表示方法。这一从学生的经验中,逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律。有助于学生理解“数对”在确定位置中的作用。

  教学目标:

  1.在具体的情境中,能在方格纸上用数对确定位置。

  2.通过具体的情境,理解数对对确定位置的作用,并能根据数对确定物体的位置。

  教学重点:

  掌握确定位置的方法,说出某一物体的位置。

  教学难点:

  在方格纸上用"数对"确定位置。

  教学过程:

  一、活动一:活动引入,认识数对

  1、明确列、行排列规则

  (1)学生按座位卡找座位。

  位置卡

  第 -列,第 -排

  学生可能出现

  A、找不到座位。

  B、两人找到了同一个座位。

  (2)请同学说说找座位的方法,明确排与列的数法。

  我们把竖排叫做列,确定第几列一般从左往右数,引导生按列报数;横排叫做行,确定第几行一般从前往后数,引导生按行报数。

  (3)重新找自己的座位。

  (4)班长坐在第几列第几行?(同时板书)

  2、体会学习数对的必要,认识数对

  (1)用学生自己喜欢的简便的方法表示班长的位置,可以是数字,也可以是符号。(学生板演表示的多种形式)

  这么多的方法都对不对呢?你有什么意见?

  (2)在数学上就有一种“统一的方法”可以既清楚又简便的表示位置。

  班长的位置3列2排就可以用(3,2)来表示。

  (3)你在教室里的位置是第几列第几行?用数对怎样表示?小组交流。

  小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

  生活中有没有运用数对解决的问题呢?

  3、生活中应用数对

  (1)根据位置写数对

  ①出示哈尔滨旅游景点的分布图。

  你能表示出各个景点在图中的位置吗?

  ②独立书写,全班交流。

  (2)根据数对找位置

  ①出示残缺的太阳岛景点分布图。

  你能帮忙把地图补充完整吗?

  ②学生操作后交流。

  得出:表示同一行中景点位置的数对,它们的第二个数相同;表示同一列中景点位置的数对,它们的第一个数相同。一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

  二、活动二:学生小结

  学习了确定位置,你有什么收获?

  三、活动三:课外引申——数对在国际象棋中的运用。

  1、课件出现国际象棋棋盘和棋子

  (1)介绍:国际象棋的棋盘是一个正方形,等分为六十四方格。这些方格有深浅两种颜色,交替排列。国际象棋的八条直线分别用a、b、c、d、e、f、g、h表示,八条横线分别用1、2、3、4、5、6、7、8表示。每个方格便有了自己的名字。国际象棋的棋子有黑白两色,各有一个王、一个后、两个车、两个象、两个马和八个兵。

  (2)如果白王所处的位置用国际象棋专用的方法记录为g2,你知道是用什么方法记录棋的位置的吗?

  (3)课件出现三枚棋子在棋盘上的不同位置,问:其他棋各在什么位置?

  (4)如果有一枚棋走一步记录为C6—C2,你知道是哪枚棋从什么位置走到什么位置上吗?

  四、活动四:游戏——摆子连线

  比赛规则:每3人一个小组,第一个学生先掷两次骰子。假如第一次是2,第二次是4,就将自己的棋子放在(2,4)的位置上(说明:棋子用一点来表示)。

  第二个学生接着同样的操作,按所掷的点数放棋子。如果位置被其他棋子占了,可以重新再掷。

  另外的一个学生负责记录。

  每放对一个棋子加1分、如果你将两个棋子连在一起就奖2分,3个棋子连在一起就奖3分,依此类推,将你们俩的得分记录在一张纸上、谁先得8分,谁就赢了。(学生操作,教师下去巡视)

  活动五:全课总结

  刚才,我们是怎样探究总结出用数对表示位置的方法的?

  板书设计:

  位 置

六年级数学教案4

  教学内容:冀教版《数学》六年级上册第92、93页。

  教学目标:

  1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

  2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

  3、感受数学在解决问题中的价值,培养数学应用意识。

  课前准备:一个蒙古包图片

  教学过程:

  一、问题情境

  1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的'问题,给学生充分的发表不同问题的机会。

  师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

  生:蒙古包。

  师:对,蒙古包。看,老师带来了一张蒙古包的图片。

  图片贴在黑板上。

  师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

  2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

  师:如果要计算蒙古包的占地面积,怎么办?

  生:测量出蒙古包的直径,就能计算出它的占地面积。

  师:对。测量出直径就能求出它的面积。大家来观察这个图片,这个蒙古包的直径好测量吗?

  生:不好测量。

  师:对,从外面没法测量。从里面测量一方面屋子里有东西不好量,另外也不容易测量准确。测量直径不行,还有其它方法吗?

  生:测量出周长。

  师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。

  板书:周长18.84米。

  二、解决问题

  1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

  师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

  学生讨论。

  师:谁来说说已知圆的周长是多少,怎样求圆的面积?

  生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

  学生说不完整,教师参与交流。

  师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

  学生独立计算,教师巡视并指导。

  2、交流计算的过程和结果,重点说一说是怎样算的。教师板书出计算的过程。 师:哪位同学说说你是怎么解答的?先算的什么,再算的什么?

  生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)

  学生说的同时,教师板书:

  蒙古包的半径:

  2×3.14×r=25.12

  r=25.12÷6.28

  r=4

  蒙古包的占地面积:

  3.14×42=50.24(平方米)

  如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

  三、课堂练习

  1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

  师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

  学生独立完成,教师个别指导。

  师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

  生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)

  师:看第2题,求花池的面积。自己解答。

  交流时,请学习稍差的学生回答。

  答案:3.14×2×r=18.84

  r=3

  3.14×32=28.26(平方米)

  2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。 师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.

  学生完成后,指名汇报。答案:

  3.14×2×r=100.5

  r=16

  3.14×162=803.84(平方厘米)

  3、“练一练”第4题。结合书中的插图,弄清活动要求,然后让学生课下完成。师:读一读第4题.谁知道树的横截面指的是什么?

  生:就是把树锯断后的圆面。

  师:树木的周长相当于这个横截面的什么?

  生:周长。

  师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

  学生读题。

  师:用同样长的铁丝,分别围成一个正方形和一个圆。围成的图形哪个面积大?就这个问题,谁想发表一下自己的意见?

  学生可能出现不同意见,都不做评价。

  四、问题讨论

  1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

  师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

  学生合作研究,教师参与指导。

  2、全班交流,重点说一说思考的过程和举例计算的结果。使学生认识到周长相同的平面图形中,圆的面积最大。 师:谁来说一说你们假设铁丝的长度是多少,计算的结果是什么?

  学生可能出现不同的假设。如:(1)假设铁丝长1米。

  正方形的边长:1÷4=0.25=25(厘米)

  正方形面积:25×25=625(平方厘米)

  圆半径:100÷2÷3.14≈16(厘米)

  圆面积:3.14×162≈803(平方厘米)

  结论:圆的面积大

  (2)假设铁丝长2米。

  正方形的边长:2÷4=0.5=50(厘米)

  正方形面积:50×50=2500(平方厘米)

  圆半径:200÷2÷3.14≈32(厘米)

  圆面积:3.14×322≈3215(平方厘米)

  结论:圆的面积大

  (3)假设铁丝长4米。

  正方形的边长:4÷4=1(米)

  正方形面积:1×1=1(平方米)

  圆半径:4÷2÷3.14≈0.64(米)

  圆面积:3.14×0.642≈1.29(平方米)

  结论:圆的面积大

  3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

  师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

  生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。

六年级数学教案5

  一、教学内容

  解决问题的练习课。(教材第44~45页练习九第3、4、7、8题)

  二、教学目标

  1.复习“已知两个数的和(差)及这两个数的倍数关系,求这两个数”“分数除法在工程问题中的应用”两类分数除法应用题,使学生熟练掌握这两类问题的解决方法。

  2.提高学生解决实际问题的能力。

  三、重点难点

  重难点:熟练掌握这两类分数除法应用题的解题思路和方法。

  四、教学过程

  一、基础练习

  只列式,不计算。(课件出示题目)

  (1)一条公路全长900 m,已修的米数是剩下的1/2。已修的、剩下的各有多少米?

  (2)修一条公路,甲队单独修要4天,乙队单独修要5天。两队合作,需要修多少天?

  点名学生回答,并说一说分别属于什么类型的应用题。

  二、指导练习

  (一)已知两个数的和(差)及这两个数的倍数关系,求这两个数

  1.教学教材第44页练习九第3题。

  (1)学生读题,理解题意,明确应用题类型。

  (2)师:解决这类题有哪些方法?

  引导学生回顾用方程法和算术法解决。

  (3)引导学生分析题中的数量关系。

  (4)学生独立列式计算,点名学生板演,集体订正。

  (5)师生共同归纳方法。

  2.教学教材第44页练习九第4题。

  学生独立完成,两人一组相互订正,最后集体订正。

  (二)分数除法在工程问题中的应用

  1.教学教材第45页练习九第7题。

  (1)学生读题,理解题意。

  (2)师:这是什么类型的问题?

  引导学生说出是行程问题中的相遇问题。

  师:这类问题有什么数量关系?

  引导学生说出总路程÷速度和=相遇时间。(板书数量关系)

  师:总路程知道吗?

  引导学生发现也可设全程为单位“1”来解决问题。

  (3)学生独立列式计算。

  (4)点名学生回答,根据回答,板书:

  1÷1/2+1/3

  =1÷5/6

  =6/5(时)

  (5)教师小结:类似这样的行程问题也可按照解决工程问题的方法求解。

  2.教学教材第45页练习九第8题。

  点名学生板演,其余学生独立完成,最后集体订正。

  三、巩固练习

  1.完成教材第45页“练习九”第5题。(学生独立完成,教师订正)

  解:设白昼是x小时,则黑夜是3/5x小时。

  x+3/5x=24 x=15

  3/5×15=9(时)

  2.教学教材第45页“练习九”第9题。(学生独立完成,两人一组相互订正)

  1÷1/8+1/10=40/9(天)

  40/9<5,5天能种完。

  3.一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的4/5?(课件出示题目)

  4/5÷1/10+1/15=24/5(天)

  四、课堂小结

  你有哪些收获?还有什么不明白的地方?

  板书设计

  练习课

  第7题:总路程÷速度和=相遇时间

  1÷1/2+1/3

  =1÷5/6

  =6/5(时)

  教学反思

  1.发挥学生的主观能动性。

  练习过程中,尽量放手让学生去想、去做、去评。若有疑问,则与同桌或在小组内自由讨论交流,最后集体订正。

  2.重视学生的情感体验。

  学生在思考、交流的过程时,一直处于问题的解决过程中。在这个过程中,教师应让学生不断积极主动地表现自我,也鼓励学习较弱的学生勇于提出问题,同时用积极的言语对他们的思路给予肯定,使学生有很好的情感体验。

六年级数学教案6

  教学目标

  1.进一步理解采用法定计量单位的重要意义.

  2.复习长度、面积、体积、质量、时间单位.

  3.复习各种计量单位间的进率.

  教学重点

  指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.

  教学难点

  掌握各种计量单位的实际大小及进率,正确使用计量单位.

  教学步骤

  一、直接导入.

  提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)

  教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习量的计量.(教师板书课题)

  二、归纳整理.

  (一)启发学生回忆:我们学过了哪些量的计量?

  教师板书:

  长度 质量 时间

  面积

  体积(容积)

  (二)复习长度、面积、体积单位及进率.

  1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?

  2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间

  的进率是多少?

  学生讨论:相邻面积单位之间的进率为什么都是100?

  师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.

  3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?

  学生思考:相邻体积单位之间的进率为什么是1000?

  教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.

  4.练习.

  (1)在( )里填上适当的计量单位名称.

  一枝铅笔长176( ) 一个篮球场占地420( )

  一张课桌宽52( ) 一个火柴盒的体积是21( )

  一间教师的面积是48( ) 一种保温瓶的容量是2( )

  (2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?

  (3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?

  (三)复习质量单位.

  1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)

  2.练习.

  ①10麻袋大米约1( )

  ②l个鸡蛋约6.5( )

  ③1棵白菜约2.5( )

  ④1名六年级学生体重是40( )

六年级数学教案7

  1、学会计算分数的连乘,知道分数连乘的简便算法和计算时约分的简便方法。

  2、培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。

  教学重难点

  分数连乘的简便算法和计算时约分的简便方法。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习

  二、新课教学

  1、P1312题口算

  2、笔算9/149/10

  问:分数乘法怎样计算?怎样约分计算比较简便?

  1、教学例4

  (1)出示例4

  问:这样的乘法算式你能算吗?

  (2)讨论计算过程

  问:有没有不同的算法?

  (3)比较不同算法。

  问:两种算法各是怎样算的?

  你认为哪种算法比较简便?怎样计算比较简便?

  2、归纳方法

  问:今天的分数乘法,和以前计算的分数乘法有什么不同?在计算时它是怎样乘?

  三:巩固练习

  1、做练一练

  2、做练习二15、16题

  四、课堂小结

  这节课学习了什么内容?分数连乘怎样算比较简便?

  五、作业

  练习二第13、14、17

  课后感受

  在三个数一起约分的过程中,特别提醒学生注意约分是分子和分母约。

六年级数学教案8

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求这个数的几分之几是多少。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:

  掌握分数乘整数的计算方法。

  教学难点:

  理解分数乘整数和一个数乘分数的意义。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  课件出示情景图:仔细观察,从图中能得到哪些数学信息?这里的 个表示什么?你能利用已学知识解决这个问题吗?想一想,你还能找出不一样的方法验证你的计算结果吗?

  二、自主学习(自主学习,生成问题)

  小组自主研究计算方法,交流汇报。

  预设:(1) (个);(2) (个);(3) (个);(4)3个 就是6个 就是 ,再约分得到 (个)。(根据学生发言依次板书)

  比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设

  生1:每个人吃 个,3个人就是3个 相加。

  生2:3个 个相加也可以用乘法表示为 。

  提出质疑:3个 相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示求3个 相加是多少。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

六年级数学教案9

  教案点评:

  采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。不但从感性到理性认识了圆,同时还发展了空间想像力、动手操作能力和口头表达能力。

  教学目标

  1.使学生认识圆,知道圆的各部分名称.

  2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

  3.初步学会用圆规画圆,培养学生的作图能力.

  4.培养学生观察、分析、抽象、概括等思维能力.

  教学重点

  理解和掌握圆的特征,学会用圆规画圆的方法.

  教学难点

  理解圆上的概念,归纳圆的特征.

  教学过程

  一、铺垫孕伏

  (一)教师用投影出示下面的图形

  1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?

  2.教师指出:我们把这样的图形叫做平面上的直线图形.

  (二)教师演示

  一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.

  1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

  2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)

  二、探究新知

  (一)教师让学生举例说明周围哪些物体上有圆.

  (二)认识圆的各部分名称和圆的特征.

  1.学生拿出圆的学具.

  2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

  教师说明:圆是平面上的一种曲线图形.

  3.通过具体操作,来认识一下圆的各部分名称和圆的特征.

  (1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次.

  教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

  仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

  教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母 表示.

  教师板书:圆心

  (2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  (圆心到圆上任意一点的距离都相等)

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示.(教师在圆内画出一条半径,并板书:半径 )

  教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

  在同一个圆里可以画多少条半径?

  所有半径的长度都相等吗?

  教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.

  (3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

  教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母 来表示.(教师在圆内画出一条直径,并板书:直径 )

  教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

  在同一个圆里可以画出多少条直径?

  自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

  教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.

  (4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的

  长度都相等;有无数条直径,所有直径的长度也都相等.

  (5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

  如何用字母表示这种关系?

  反过来,在同一个圆里,半径的长度是直径的几分之几?

  教师板书:在同一个圆里,直径的长度是半径的2倍.

六年级数学教案10

  如何突破分数乘分数这个难点?

  分数乘法的计算法则和分数乘法的意义是分数乘除法的基础,也是整个六年级应用题学习的基础和关键。而在人教版第5页的例3中,它是从分数乘分数的意义着手进行理解和分析,在经过繁杂的把单位1按分数意义平分再平分,还要借助画图让学生发现其实就是把单位1平均分成十份,而这个十份就是把分母相乘而得来的。法则的证明过程对于小学生来说非常的复杂的。纵观教材的编排思路与意图,它是按照成人的思维能力从最正统的思路按部就班着手进行分析与解释,它忽略了这个年龄段的大多数学生的接受能力。

  有没有学生比较容易理解而又不难得出分数计算法则的方法?其实在学生学习分数乘法的过程中,特别是分数乘法的计算法则的学习,到了后面的计算对于学生来说记得的只是它的计算法则了,我们大可以撇开分数乘法的意义,换个角度去进行思考。大家都知道学生在五年级时学过分数化小数的知识,不妨在这节里拿出来用用,从小数乘法着手进行推导,学生会很快接受和掌握。

  可以这样进行,先讲例3,把例3里的分数改成可以化成有限小数的分数,如

  一、列式(要求只列式)

  1、一台拖拉机每小时耕地3/5公顷,3小时可耕地多少公顷?

  学生列式:3/5*3=?

  2、一台拖拉机每小时耕地3/5公顷,3/4小时可耕地多少公顷?

  引导学生想数量关系:

  每小时耕地的公顷数*小时数=一共可耕地的公顷数

  列式:3/5*3/4=

  二、探讨怎么算,初步感知

  1、让学生尝试计算并自由发言自己的想法

  师生齐小结:3/5*3表示有3个3/5相加即

  3/5+3/5+3/5=3*3/5=9/5(公顷)

  2、而3/5*3/4则可以化成小数进行计算

  3/5*3/4=0.6*0.75=0.45即

  3/5*3/4==9/20(把小数的结果化成分数)

  让学生猜猜,中间的计算过程是可以怎样填写

  补充完整:3/5*3/4=3*3/5*4=9/20

  三、进行验证:

  1、老师出题:1/2*1/5=?5/8*1/4=

  学生尝试完成并板书:1/2*1/5=1*1/2*5=1/10

  5/8*1/4=5*1/8*4=5/32(这道题稍繁杂)

  2、进行总结:你发现分数乘分数的计算方法可以怎样算?

  通过对以上式子的观察从而得出结论:分数乘分数用分子相乘的积作分子,用分母相乘的积作分母。

  3、教学如何用以上的法则去学习分数乘整数

  如例题中的3/5*3,其实也可以用以上法则进行计算

  过程如下:3/5*3=3/5*3/1=3*3/5*1=9/5

  把整数3化成分数形式3/1就可以用以上法则进行计算了

  4、出两道不能化成有限小数的分数乘法

  如:3/9*2/7=

  让学生用两种方法去做,

  第一种方法:是把分数化成小数(保留两位小数)

  3/9*2/7=033*0286=009438

  第二种方法:是用分数乘法的法则去做

  3/9*2/7=3*2/9*7=6/63=00952

  四、教学先约分再乘的方法

  这样进行教学虽然有其局限性,如分类数的选择就有讲究,必须是能化成有限小数的,二是化成小数然后再化成分数这个过程不是每个小数化分数都很容易。故而这样的分数也不是很随意的能找到,而对于不能化成有限小数的分数乘法就很难用这样的方法去进行有效的验证,当然这里使用的是不完全归纳法,举一知十进行推理,从而得出计算法则。这样做的基础是从学生最近发展区出发,从学生最容易接受的旧知出发正向迁移至新的知识中去。这是可行的。

六年级数学教案11

  教学目标:

  1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

  2、收集统计在生活中应用的例子,整理收集数据的方法。

  3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

  教学过程:

  一、课前预习,出示预习提纲:

  1、我们学习了哪几种统计图?

  2、这几种统计图各有什么特点?

  3、概率的知识有哪些?

  二、展示与交流

  (一)提出问题

  1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

  2、师:先独立列出几个你想调查的问题。(写在练习本上)

  3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

  4、接着全班汇报交流(师罗列在黑板上)

  师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

  (二)收集数据和整理数据

  1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

  2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

  (三)开展调查

  1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

  2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

  3、全班汇总、整理、归纳各小组数据。(板书)

  4、师:分析上面的数据,你能得到哪些信息?

  5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

  6、师:根据这些信息,你还能提出什么数学问题?

  (四)回顾统计活动

  1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

  师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

  2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

  指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

  3、结合生活中的例子说说收集数据有哪些方法?

  (1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

  的实例)来说说自己的方法。

  (2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

  4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

  师生一边回忆补充,一边归纳完善如下知识结构表

  (1)谈话:对照上面的知识结构表,请同桌讨论一下,三种统计图有什么相同点和不同点?

  (2)师:我们要根据需要选择合适的统计图。

  (3)师:怎么样整理六(1)班家庭成员人数的调查结果?

  (4)师:用折线统计图表示月平均气温变化有什么好处?

  (5)师:假如小芳买课外书用了20元钱,那么小芳的零花钱共有多少元?

  (6)师:你能举例说明这几种统计图的特点吗?

  5、结合实例,说说自己对平均数的理解,平均数有什么特点,并收集生活中应用平均数的例子。

  师:什么叫中位数、众数?

  三、反馈与检测:

  1、出示统计图,问:这是个什么统计图民要呈现的是什么内容?你图中你看懂了什么?

  2、让学生独立思考书中4个问题,再全班反馈、交流。

  (1)从统计图中可以看出,随着年龄的增长,平均体重有什么变化?

  (2)从统计图中可以看出,女生在哪个年龄段平均体重增加最快?

  (3)平城市均体重的增加与年龄增长成正比例吗?试举例说明理由。

  (4)从上图中,你还能得到哪些信息?

  3、出示某日部分城市空气质量日报统计图,

  (1)先引导学生读图,从图中你获得哪些信息?

  (2)通过看图你能提出什么问题?得出哪些结论?并对学生进行环境保护的教育。

  4、学校气象小组测得上周星期一至星期五的室外空气气温,并求出平均值。

  主要是对平均数进行练习,先让学生独立审题,再解答,然后全班反馈交流,说说自己的算法。

  5、出示李明家五月份支出及储蓄情况统计图;

  (1)先让学生通过读图获取信息,独立解决问题。

  (2)师:你是怎么样算出李明家的支出及储蓄决共的钱数。

  (3)独立填写表格,全班交流订正。

  6、在一次实验活动中,小青记录了一壶水的加热过程水温变化的情况,数据如下:

  (1)让学生独立绘制折线统计图,4个小组交流、检查、订正。

  (2)根据图表,独立回答下面问题,然后全班汇报、交流。

  7、某小组8名同学的体重如下表。

  读懂表格,分别求出这些数据的平均数,中位数,众数。

  教学反思:

  在实际教学中一方面要尽量创设情境,采用案例教学的基本方式展开教学,通过大量的具体案例来帮助学生理解;另一方面要设计一些活动,让学生经历统计的全过程,在学生合作学过程中,学生既要独立思考,自主探索,又要在解决实际问题中与别人合作、交流。例如:在教学《确定事件与不确定事件》中,让学生通过一系列的案例理解概念。太阳从东边升起,抛起的篮球会下降等等一定会发生的事件就是可能事件,太阳从西边升起,公鸡下蛋等一定不会发生的事件就是不可能事件。让学生在具体案例中体验概念。理解概念。

  运用数学的思维方式去观察分析现实社会,去解决日常生活中和其他学科学习中的问题是我们新课改的一个目标。我们在教学中注意观察学生是否有学好数学的自信心,能够不回避遇到的困难去解决问题的思想意识。在“统计与概率”教学中注意学生小组合作,是否能用建构的方式建立“统计与概率”和运用比、分数、百分数和小数的联系,建构有意义的认知结构,从而使学生更深入、更灵活的学习。

六年级数学教案12

  教学目标

  1.使学生能正确判断应用题中涉及的量成什么比例关系.

  2.使学生能利用正、反比例的意义正确解答应用题.

  3.培养学生的判断推理能力和分析能力.

  教学重点

  使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.

  教学难点

  利用正反比例的意义正确列出等式.

  教学过程

  一、复习准备.(课件演示:比例的应用)

  (一)判断下面每题中的两种量成什么比例关系?

  1.速度一定,路程和时间.

  2.路程一定,速度和时间.

  3.单价一定,总价和数量.

  4.每小时耕地的公顷数一定,耕地的总公顷数和时间.

  5.全校学生做操,每行站的人数和站的行数.

  (二)引入新课

  我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.

  教师板书:比例的应用

  二、新授教学.

  (一)教学例1(课件演示:比例的应用)

  例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  1.学生利用以前的方法独立解答.

  14025

  =705

  =350(千米)

  2.利用比例的知识解答.

  (1)思考:这道题中涉及哪三种量?

  哪种量是一定的?你是怎样知道的?

  行驶的路程和时间成什么比例关系?

  教师板书:速度一定,路程和时间成正比例

  教师追问:两次行驶的路程和时间的什么相等?

  怎么列出等式?

  解:设甲乙两地间的公路长 千米.

  答:两地之间的公路长350千米.

  3.怎样检验这道题做得是否正确?

  4.变式练习

  一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

  (二)教学例2(课件演示:比例的应用)

  例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?

  1.学生利用以前的方法独立解答.

  2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

  这道题里的路程是一定的,_________和_________成_________比例.

  所以两次行驶的_________和_________的_________是相等的.

  3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

六年级数学教案13

  教学目标:

  1、让学生了解正确的爱美观。

  2、让学生知道小学六年级学生的各种心理特征,以及如何处理好这个阶段的种种问题。

  教学重难点:

  知道小学六年级学生的各种心理特征,以及如何处理好这个阶段的种种问题。

  教学准备:教学挂图

  教学时间:一课时

  教学过程:

  一、导人新课:

  1、同学们,爱美之心,人皆有之。知道什么才是美吗?

  2、揭题:爱美与健康

  二:读课文

  1、自读课文

  思考:热怎样才是美?

  2、齐读课文,回答

  (1)学生回答

  (2)读重点段

  3、说说你是怎样理解的

  (1)相互讨论、交流

  (2)指名回答

  4、思考课后练习,进一步提高真正美的认识。

  三、总结课文

  四、作业练习

  1、什么是真正的美?

  2、完成课后作业。

  板书设计:

  爱美与健康

  美:形体美风度美仪表美心灵美

六年级数学教案14

  一、教学内容

  比的应用的练习课。(教材第55~56页练习十二第3~7题)

  二、教学目标

  1、复习巩固按比分配问题的解题方法。

  2、进一步培养学生应用知识解决实际问题的能力。

  三、重点难点

  重难点:会灵活运用按比分配问题的解题方法解决实际问题。

  教学过程

  一、基础练习

  1、师:比的意义和基本性质是什么?(点名学生回答)

  2、教材第55页练习十二第5、6题。

  (学生独立完成,集体订正)

  3、师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

  引导学生回顾按比分配的两种解题方法。

  二、指导练习

  1、教学教材第55页练习十二第3题。

  (1)组织学生观察图画,理解题意,了解信息。

  (2)组织学生小组讨论,如何解决问题。

  教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

  (3)交流后,学生独立完成,集体订正。

六年级数学教案15

  教学目标:

  知识与能力:结合教材提供的素材,会确定物体的位置,并能利用方格纸依据两个数据确定物体的位置。

  过程与方法:能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。

  情感态度与价值观:能较熟练地在方格纸上确定物体的位置,初步体会坐标的思想。

  教学重点:了解根据方向和距离确定物体位置的方法。

  教学难点:能根据描述,在平面图上标出物体的具体位置。

  课时安排:1课时

  教学过程:

  课前导学(导学)

  课前两分钟

  一、旧知铺垫、导入复习课

  1、说一说自己的家在学校的什么位置?

  出示学习目标

  知识与能力:结合教材提供的素材,会确定物体的位置,并能利用方格纸依据两个数据确定物体的位置。

  过程与方法:能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。

  情感态度与价值观:能较熟练地在方格纸上确定物体的位置,初步体会坐标的思想。

  前置学习(自学)

  (1)教师肯定以上学生描述的方式。

  (2)明确说明本节课我们要进一步复习确定位置的有关知识。

  让学生畅所欲言,谈谈自己在学习过程中遇到的问题,还有什么不足,一起讨论。

  小组合作

  学习

  (互学)

  1、教学例1实物投影出示主题图:

  (1)说一说主图中所说的含义:

  台风中位于A市东偏南30度方向,距离A市600千米的洋面上,正以20千米每小时的速度沿着直线向A市移动,

  (2)学生观察座位图,想说谁的位置就跟同伴说一说。

  (3)理解题意,确定观测点,建立方向图。

  (4)台风在A市的东偏南30度距离600千米的地方。

  (5)图例要弄懂。

  (6)探索用数据表示位置的方法。

  台风中心在A市的什么地方?并在学生讨论的基础上教师引导学生认识用数据表示物体物体的位置的方法。

  全班交流

  展示学习

  (展示)

  2、完成教材第20页做一做,

  3、复习教学例2

  投影出示课本中主题图

  (1)观察示意图,说一说那看到了什么。

  (2)说一说本题的含义。

  (3)互相讨论方法。

  4、完成21页中的做一做。

  1)你是怎样做的?

  2)集体订正。

  5、学生自学教材第22页例题3.

  (1)、用自己的语言描述台风的经过路线图。

  (2)、同坐互相说一说台风的经过路线图。

  完成教材22页的“做一做”。P23第2,4,6,7题

  集体订正。

  挑一道典型的求平均数的题目进行练习,如求平均速度;复习一下画角的过程,会描述小林家在小强家什么位置,小强家在小林家什么位置?

  拓展检测

  学习

  (测评)

  通过这节课的学习,你有什么收获?

  刚才,我们是怎样探究出表示物体物体的位置的方法?

  画平面图的方法:先确定方向,再确定距离,确定距离的时候可以用一条标有数量的线段表示地面上的距离。

【六年级数学教案】相关文章:

六年级数学教案08-27

六年级小学数学教案10-11

六年级人教版数学教案12-02

六年级数学教案12-12

六年级数学教案01-04

六年级数学教案08-27

小学六年级数学教案11-16

小学六年级数学教案08-25

六年级数学教案分享04-10

关于六年级位置数学教案06-12