八年级数学教案

时间:2022-12-30 09:20:57 教案 我要投稿
  • 相关推荐

【热】八年级数学教案

  作为一名人民教师,编写教案是必不可少的,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编帮大家整理的八年级数学教案,仅供参考,大家一起来看看吧。

【热】八年级数学教案

八年级数学教案1

  【教学目标】

  1.了解分式概念.

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  【教学重难点】

  重点:理解分式有意义的条件,分式的值为零的条件.

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

  【教学过程】

  一、课堂导入

  1.让学生填写[思考],学生自己依次填出:,,,.

  2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  设江水的流速为x千米/时.

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

  3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

  二、例题讲解

  例1:当x为何值时,分式有意义.

  【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.

  (补充)例2:当m为何值时,分式的值为0?

  (1);(2);(3).

  【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

  三、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.当x取何值时,下列分式有意义?

  3.当x为何值时,分式的值为0?

  四、小结

  谈谈你的收获.

  五、布置作业

  课本128~129页练习.

八年级数学教案2

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力.

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用.

  2.难点:灵活地应用公式法进行因式分解.

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

  教学过程

  一、回顾交流,导入新知

  【问题牵引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知识迁移】

  2.计算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【学生活动】从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例学习,应用所学

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

  三、随堂练习,巩固深化

  课本P170练习第1、2题.

  【探研时空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、课堂总结,发展潜能

  由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

  五、布置作业,专题突破

八年级数学教案3

  学习重点:函数的概念 及确定自变量的取值范围。

  学习难点:认识函数,领会函数的意义。

  【自主复习知识准备】

  请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

  【自主探究知识应用】

  请看书72——74页内容,完成下列问题:

  1、 思考书中第72页的问题,归纳出变量之间的关系。

  2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

  3、 归纳出函数的定义,明确函数定义中必须要满足的条件。

  归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  补充小结:

  (1)函数的定义:

  (2)必须是一个变化过程;

  (3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。

  三、巩固与拓展:

  例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

  (1)写出表示y与x的函数关系式.

  (2)指出自变量x的取值范围.

  (3) 汽车行驶200千米时,油箱中还有多少汽油?

  【当堂检测知识升华】

  1、判断下列变量之间是不是函数关系:

  (1)长方形的宽一定时,其长与面积;

  (2)等腰三角形的底边长与面积;

  (3)某人的年龄与身高;

  2、写出下列函数的解析式.

  (1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.

  (2)汽车加油时,加油枪的流量为10L/min.

  ①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

  ②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系.

  (3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

  八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

八年级数学教案4

  一、教学目标

  1、理解分式的基本性质。

  2、会用分式的基本性质将分式变形。

  二、重点、难点

  1、重点:理解分式的基本性质。

  2、难点:灵活应用分式的基本性质将分式变形。

  3、认知难点与突破方法

  教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

  三、练习题的意图分析

  1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

  2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

  教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

  3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

  “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

  四、课堂引入

  1、请同学们考虑:与相等吗?与相等吗?为什么?

  2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

  3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

  五、例题讲解

  P7例2.填空:

  [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

  P11例3.约分:

  [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

  P11例4.通分:

  [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

八年级数学教案5

  教学目标:

  1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

  2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

  3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

  重点与难点:

  重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

  难点:分析典型图案的设计意图。

  疑点:在设计的图案中清晰地表现自己的设计意图

  教具学具准备:

  提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

  教学过程设计:

  1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

  明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

  2、课本

  1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

  评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

  评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

  (二)课内练习

  (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

  (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

  (三)议一议

  生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

  (四)课时小结

  本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

  通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

  八年级数学上册教案(五)延伸拓展

  进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案6

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的画法.

  (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的.顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

八年级数学教案7

  一、教材分析教材的地位和作用:

  本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

  二、学情分析

  八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

  三、教学目标及重点、难点的确定

  根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

  (一)教学目标:

  1、知识技能

  (1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.

  (2)理解并掌握轴对称的概念,对称轴;了解对称点.

  (3)了解轴对称图形和轴对称的联系与区别.

  2、过程与方法目标

  经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.

  3、情感、态度与价值观

  通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

  (二)教学重点:轴对称图形和轴对称的有关概念.

  (三)教学难点:轴对称图形与轴对称的联系、区别

  .四、教法和学法设计

  本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

  【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

  【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

  【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

  五、说程序设计:

  新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

  (一)、观图激趣、设疑导入。

  出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

  [设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

  (二)、实践探索、感悟特征.

  《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

  为了进一步认识轴对称图形的特点又出示了一组练习

  (练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

  [设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

  (练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。

  (三)、动手操作、再度探索新知。

  将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

  再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。

  (四)、巩固练习、升华新知。

  出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

  在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

  (课件演示)轴对称图形及两个图形成轴对称区别与联系

  (五)、综合练习、发展思维。

  1、抢答;观察周围哪些事物的形状是轴对称图形。

  2、判断:

  生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

  (1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

  0123456789ABCDEFGH

  3、像这样写法的汉字哪些是轴对称图形?

  口工用中由日直水清甲

  (这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

  (六)归纳小结、布置作业

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

  六、设计说明

  这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

八年级数学教案8

  分式方程

  教学目标

  1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

  2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

  3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

  教学重点:

  将实际问题中的等量 关系用分式方程表示

  教学难点:

  找实际问题中的等量关系

  教学过程:

  情境导入:

  有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

  如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

  根据题意,可得方程___________________

  二、讲授新课

  从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

  这 一问题中有哪些等量关系?

  如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

  根据题意,可得方程_ _____________________。

  学生分组探讨、交流,列出方程.

  三.做一做:

  为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

  四.议一议:

  上面所得到的方程有什么共同特点?

  分母中含有未知数的方程叫做分式方程

  分式方程与整式方程有什么区别?

  五、 随堂练习

  (1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

  (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

  (3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

  六、学 习小结

  本节课你学到了哪些知识?有什么感想?

  七.作业布置

八年级数学教案9

  一、教学目标

  1.使学生理解并掌握分式的概念,了解有理式的概念;

  2.使学生能够求出分式有意义的条件;

  3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

  4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

  二、重点、难点、疑点及解决办法

  1.教学重点和难点 明确分式的分母不为零.

  2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

  三、教学过程

  【新课引入】

  前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

  【新课】

  1.分式的定义

  (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①分母中含有字母.

  ②如同分数一样,分式的分母不能为零.

  (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

  2.有理式的分类

  请学生类比有理数的分类为有理式分类:

  例1 当取何值时,下列分式有意义?

  (1);

  解:由分母得.

  ∴当时,原分式有意义.

  (2);

  解:由分母得.

  ∴当时,原分式有意义.

  (3);

  解:∵恒成立,

  ∴取一切实数时,原分式都有意义.

  (4).

  解:由分母得.

  ∴当且时,原分式有意义.

  思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

  例2 当取何值时,下列分式的值为零?

  (1);

  解:由分子得.

  而当时,分母.

  ∴当时,原分式值为零.

  小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而当时,分母,分式无意义.

  当时,分母.

  ∴当时,原分式值为零.

  (3);

  解:由分子得.

  而当时,分母.

  当时,分母.

  ∴当或时,原分式值都为零.

  (4).

  解:由分子得.

  而当时,,分式无意义.

  ∴没有使原分式的值为零的的值,即原分式值不可能为零.

  (四)总结、扩展

  1.分式与分数的区别.

  2.分式何时有意义?

  3.分式何时值为零?

  (五)随堂练习

  1.填空题:

  (1)当时,分式的值为零

  (2)当时,分式的值为零

  (3)当时,分式的值为零

  2.教材P55中1、2、3.

  八、布置作业

  教材P56中A组3、4;B组(1)、(2)、(3).

  九、板书设计

  课题 例1

  1.定义例2

  2.有理式分类

八年级数学教案10

  知识结构:

  重点与难点分析:

  本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

  本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

  教法建议:

  本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

  (2)采用“类比”的学习方法,获取知识。

  由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

  (3)总结,形成知识结构

  为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

  一.教学目标:

  1.使学生掌握等腰三角形的判定定理及其推论;

  2.掌握等腰三角形判定定理的运用;

  3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  4.通过自主学习的发展体验获取数学知识的感受;

  5.通过知识的纵横迁移感受数学的辩证特征.

  二.教学重点:等腰三角形的判定定理

  三.教学难点:性质与判定的区别

  四.教学用具:直尺,微机

  五.教学方法:以学生为主体的讨论探索法

  六.教学过程:

  1、新课背景知识复习

  (1)请同学们说出互逆命题和互逆定理的概念

  估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

  (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

  启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

  1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

  (简称“等角对等边”).

  由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  已知:如图,△ABC中,∠B=∠C.

  求证:AB=AC.

  教师可引导学生分析:

  联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

  注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

  (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

  (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

  2.推论1:三个角都相等的三角形是等边三角形.

  推论2:有一个角等于60°的等腰三角形是等边三角形.

  要让学生自己推证这两条推论.

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

  3.应用举例

  例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求证:AB=AC.

  证明:(略)由学生板演即可.

  补充例题:(投影展示)

  1.已知:如图,AB=AD,∠B=∠D.

  求证:CB=CD.

  分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

  证明:连结BD,在 中, (已知)

  (等边对等角)

  (已知)

  即

  (等教对等边)

  小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

  2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

  分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

  证明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小结:

  (1)等腰三角形判定定理及推论.

  (2)等腰三角形和等边三角形的证法.

  七.练习

  教材 P.75中1、2、3.

  八.作业

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板书设计

八年级数学教案11

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:对于平均数、中位数、众数在不同情境中的应用。

  教学方法:归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1,……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:

  每人销售件数 1800 510 250 210 150 120

  人数 113532

  (1)求这15位营销人员该月销售量的平均数、中位数和众数;

  (2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。

  例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:复习题B组、C组(选做)

八年级数学教案12

  ●教学目标

  (一)教学知识点

  1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似.

  2.能根据相似比进行计 算.

  (二)能力训练要求

  1.能根据定义判断两个三角形是否相似,训练 学生的判断能力.

  2.能根据相似比求长度和角度,培养学生的运用能力.

  (三)情感与价值观要求

  通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.

  ●教学重点 相似三角形的定义及运用.

  ●教学难点 根据定义求线段长或角的度数.

  ●教学过程

  Ⅰ.创设问题情境,引入新课

  今天, 我们就来研究相似三角形.

  Ⅱ.新课讲解

  1.相似三角形的定义及记法

  三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF

  其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?

  所以 D、E、F. .

  3.议一议,学生讨论

  (1)两个全等三角形一定相似吗?为什么?

  (2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?

  (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?

  结论:两 个全等三角形一定相似.

  两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.

  4.例题

  例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度数。(2)DE的长.

  5.想一想

  在例2的条件下,图中有哪些线段成比例?

  Ⅲ.课堂练习 P129

  Ⅳ.课时小结

  相似三角形的 判定方法定义法.

  Ⅴ.课后作业

八年级数学教案13

  11.1与三角形有关的线段

  11.1.1三角形的边

  1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)

  2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)

  3.三角形在实际生活中的应用.(难点)

  一、情境导入

  出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.

  教师利用多媒体演示三角形的形成过程,让学生观察.

  问:你能不能给三角形下一个完整的定义?

  二、合作探究

  探究点一:三角形的概念

  图中的锐角三角形有( )

  A.2个

  B.3个

  C.4个

  D.5个

  解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.

  方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.

  探究点二:三角形的三边关系

  【类型一】判定三条线段能否组成三角形

  以下列各组线段为边,能组成三角形的是( )

  A.2c,3c,5c

  B.5c,6c,10c

  C.1c,1c,3c

  D.3c,4c,9c

  解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.

  方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.

  【类型二】判断三角形边的取值范围

  一个三角形的三边长分别为4,7,x,那么x的取值范围是( )

  A.3<x<11 B.4<x<7

  C.-3<x<11 D.x>3

  解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.

  方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.

  【类型三】等腰三角形的三边关系

  已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.

  解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.

  解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.

  方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.

  【类型四】三角形三边关系与绝对值的综合

  若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.

  解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.

  解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

  方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.

  三、板书设计

  三角形的边

  1.三角形的概念:

  由不在同一直线上的三条线段首尾顺次相接所组成的图形.

  2.三角形的三边关系:

  两边之和大于第三边,两边之差小于第三边.

  本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.

八年级数学教案14

  教材分析

  因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

  学情分析

  通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

  教学目标

  1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

  2、通过公式a -b =(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

  3、能运用提公因式法、公式法进行综合运用。

  4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

  教学重点和难点

  重点:灵活运用平方差公式进行分解因式。

  难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

八年级数学教案15

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点

分式通分的理解和掌握。

  教学难点

分式通分中最简公分母的确定。

  教学工具

投影仪

  教学方法:

启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1通分:xxx

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。