中学数学教案

时间:2022-09-30 19:17:49 教案 我要投稿

关于中学数学教案范文

  作为一名为他人授业解惑的教育工作者,时常需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?下面是小编精心整理的关于中学数学教案范文,欢迎阅读与收藏。

关于中学数学教案范文

  教学目标:

  知识与技能目标:

  通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。

  培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

  过程与方法目标:

  经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

  情感态度与价值观目标:

  1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

  2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:

  经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

  难点:

  确立等量关系,列出正确的二元一次方程组。

  教学流程:

  课前回顾

  复习:列一元一次方程解应用题的一般步骤

  情境引入

  探究1:今有鸡兔同笼,

  上有三十五头,

  下有九十四足,

  问鸡兔各几何?

  “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?

  (1)画图法

  用表示头,先画35个头

  将所有头都看作鸡的,用表示腿,画出了70只腿

  还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿

  四条腿的是兔子(12只),两条腿的是鸡(23只)

  (2)一元一次方程法:

  鸡头+兔头=35

  鸡脚+兔脚=94

  设鸡有x只,则兔有(35-x)只,据题意得:

  2x+4(35-x)=94

  比算术法容易理解

  想一想:那我们能不能用更简单的方法来解决这些问题呢?

  回顾上节课学习过的二元一次方程,能不能解决这一问题?

  (3)二元一次方程法

  今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

  (1)上有三十五头的意思是鸡、兔共有头35个,

  下有九十四足的意思是鸡、兔共有脚94只.

  (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

  鸡足有2x只;兔足有4y只.

  解:设笼中有鸡x只,有兔y只,由题意可得:

  鸡兔合计头xy35足2x4y94

  解此方程组得:

  练习1:

  1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15

  2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.

  三、合作探究

  探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?

  题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?

  找出等量关系:

  解:设绳长x尺,井深y尺,则由题意得

  x=48

  将x=48y=11。

  所以绳长4811尺。

  想一想:找出一种更简单的创新解法吗?

  引导学生逐步得出更简单的方法:

  找出等量关系:

  (井深+5)×3=绳长

  (井深+1

  解:设绳长x尺,井深y尺,则由题意得

  3(y+5)=x

  4(y+1)=x

  x=48

  y=11

  所以绳长48尺,井深11尺。

  练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).

  归纳:

  列二元一次方程解决实际问题的一般步骤:

  审:审清题目中的等量关系.

  设:设未知数.

  列:根据等量关系,列出方程组.

  解:解方程组,求出未知数.

  答:检验所求出未知数是否符合题意,写出答案.

  四、自主思考

  探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和20xx张长方形纸板,问两种纸盒各做多少只,恰好使库存的`纸板用完?

  解:设做竖式纸盒X个,横式纸盒y个。根据题意,得

  x+2y=1000

  4x+3y=20xx

  解这个方程组得x=200

  y=400

  答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。

  练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?

  解:设做竖式纸盒x个,做横式纸盒y个,根据题意

  y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完.

  归纳:

  五、达标测评

  1.解下列应用题

  (1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?

  解:设4分邮票x张,8分邮票y张,由题意得:

  4x+8y=6800①

  y-x=40②

  所以,4分邮票540张,8分邮票580张

  (2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天

  的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成

  分析:由于工作总量未知,我们将其设为单位1

  晴天一天可完成

  雨天一天可完成

  解:设晴天x天,雨天y天,工作总量为单位1,由题意得:

  总天数:7+10=17

  所以,共17天可完成任务

  六、应用提高

  学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?

  分析:铅笔数量+圆珠笔数量+钢笔数量=232

  铅笔数量=圆珠笔数量×4

  铅笔价格+圆珠笔价格+钢笔价格=300

  解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:

  将②代入①和③中,得二元一次方程组

  4y+y+z=232④

  0.6×4y+2.7x+6.3z=300⑤

  解得

  所以,铅笔175支,圆珠笔44支,钢笔12支

  七、体验收获

  1.解决鸡兔同笼问题

  2.解决以绳测井问题

  3.解应用题的一般步骤

  七、布置作业

  教材116页习题第2、3题。

  x+y=35

  2x+4y=94

  x=23

  y=12

  绳长的三分之一-井深=5

  绳长的四分之一-井深=1

  -y=5①

  ①-②,得

  -y=1②

  -y=5①

  -y=5①

  -y=5①

  X=540

  Y=580

  y-x=3②

  x=7

  y=10

  x+y+z=232①

  x=4y②

  0.6x+2.7y+6.3z=300③

  X=176

  Y=44

  Z=12

【中学数学教案】相关文章:

巧断金链中学趣味数学教案10-26

经典数学教案02-22

数学教案09-13

分类数学教案03-21

趣味数学教案08-17

《分类》数学教案08-17

人教版数学教案08-28

数学教案《配对》10-14

小学数学教案08-22

小学数学教案08-24