六年级数学教案算术平方根

时间:2022-03-03 19:40:47 教案 我要投稿

六年级数学教案算术平方根

  作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们应该怎么写教案呢?下面是小编为大家收集的六年级数学教案算术平方根,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级数学教案算术平方根

  一、教学目标

  1.理解一个数平方根和算术平方根的意义;

  2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3.通过本节的训练,提高学生的逻辑思维能力;

  4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法.

  教学难点:平方根与算术平方根联系与区别.

  三、教学方法

  讲练结合.

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1.已知一正方形面积为50平方米,那么它的边长应为多少?

  2.已知一个数的平方等于1000,那么这个数是多少?

  3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

  1.( )2=9; 2.( )2=0.25;

  5.( )2=0.0081.

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

  由练习引出平方根的概念.

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

  用数学语言表达即为:若x2=a,则x叫做a的平方根.

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的平方根是0;

  ±0.09是0.0081的平方根.

  由此我们看到3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  ( )2=-4

  学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面 总结一下平方根的性质(可由学生 总结,教师 整理).

  (三)平方根性质

  1.一个正数有两个平方根,它们互为相反数.

  2.0有一个平方根,它是0本身.

  3.负数没有平方根.

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算.

  由练习我们看到3与-3的`平方是9,9的平方根是3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“-”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.

  练习:1.用正确的符号表示下列各数的平方根:

  ①26②247③0.2④3⑤

  解:①26的平方根是

  ②247的平方根是

  ③0.2的平方根是

  ④3的平方根是

  ⑤的平方根是

【六年级数学教案算术平方根】相关文章:

六年级数学教案15篇02-17

人教版六年级上册数学教案02-16

苏教版小学六年级数学教案02-16

经典数学教案02-22

人教版小学数学教案01-14

初二数学教案03-02

完全平方公式数学教案03-01

小班下册数学教案02-28

小学数学教案5篇02-25

对数的数学教案范文03-22