幂的乘方与积的乘方教案

时间:2022-02-10 16:20:43 教案 我要投稿

幂的乘方与积的乘方教案4篇

  作为一名无私奉献的老师,常常需要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?以下是小编精心整理的幂的乘方与积的乘方教案,欢迎阅读与收藏。

幂的乘方与积的乘方教案4篇

幂的乘方与积的乘方教案1

  一、教学目标

  1.理解幂的乘方性质并能应用它进行有关计算.

  2.通过推导性质培养学生的抽象思维能力.

  3.通过运用性质,培养学生综合运用知识的能力.

  4.培养学生严谨的学习态度以及勇于创新的精神.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学方法:引导发现法、尝试指导法.

  2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.

  三、重点·难点及解决办法

  (一)重点

  准确掌握幂的乘方法则及其应用.

  (二)难点

  同底数幂的乘法和幂的乘方的综合应用.

  (三)解决办法

  在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.复习同底数幂乘法法则并进行 、 的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.

  2.教师举例进行示范,师生共练以熟悉幂的乘方性质.

  3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.

  七、教学步骤

  (一)明确目标

  本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用

  (二)整体感知

  幂的乘方法则的应用关键是判断准其适用的条件和形式.

  (三)教学过程

  1.复习引入

  (1)叙述同底数幂乘法法则并用字母表示.

  (2)计算:① ②

  2.探索新知,讲授新课

  (1)引入新课:计算和 和提问学生式子 、 的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.

  观察题目和结论:

  推测幂的乘方的一般结论:

  (2)幂的乘方法则

  语言叙述:幂的乘方,底数不变,指数相乘.

  字母表示: .( , 都是正整数)

  推导过程按课本,让学生说出每一步变形的根据.

  (3)范例讲解

  例1 计算:

  ① ②

  ③ ④

  解:①

  ②

  ③

  ④

  例2 计算:

  ①

  ②

  解:①原式

  ②原式

  练习①P97 1,2

  ②错例辨析:下列各式的计算中,正确的是( )

  A. B.

  C. D.

  (四)总结、扩展

  同底数幂的乘法与幂的乘方性质比较:

  幂运算种类

  指数运算种类

  同底幂乘法

  乘法

  加法

  幂的乘方

  乘方

  乘法

  八、布置作业

  P101 A组1~3; B组1.

幂的乘方与积的乘方教案2

  一、教材分析

  《幂的乘方与积的乘方》选自义务教育课程标准实验教科书(北师版)七年级《数学》下册第七章《幂的乘方与积的乘方》,本节课在学习同底数幂的乘法以后,以学生喜爱的地理知识――几大行星体积大小的比较为切入点,利用“做一做”的游戏展开新课,让学生探索幂的乘方运算性质。充分体现新教材“问题情境―建立模型―解释、应用与拓展”的特点。以“观察―归纳―概括 ”为主要线索探索运算法则,注重发展推理能力和语言表达能 力。

  二、学情分析

  在九年义务教育阶段,学生从小学升中学无需考试,因此就出现了同一个班学生的基础有很大的差别。学生的基础不平衡,教学就有一定的难度。只有教学定位明确了,教学设计才能适合学生的学习需要。我们的学生已经经历对同底数幂乘法法则的探索,有了会进行同底数幂的乘法运算的经验,初步感受到数学源于生活,体会幂的意义,领悟数学与现实世界的联系,这些均为本节课的学习奠定了基础。根据学生的年龄特点和心理特征,本课采用了探索式学习方式,归纳、概括幂的乘方运算性质。

  三、教学目标

  1、知识技能:

  2、过程与方法:

  体会幂的意义,领悟数学与现实世界的联系,并发展实践能力;在探索过程中培养和发展学生学习数学的主动性,会运用幂的乘方的运算性质,且能用幂的意义加以说明。

  3、情感与态度:

  通过问题情境的创设,激发学生学习的积极参与数学学习活动,培养学生积极探索、勇于创新的精神。在学习中体会与他人合作的重要性,能从交流中获益。

  四、教学重点与难点

  1、重点:理解并正确运用幂的乘方的运算性质。[:学≈科≈网Z≈X≈X≈]

  2、难点:灵活运用幂的乘方的性质进行计算。

  五、教具准备

  多媒体、投影仪

  六、教学安排

  两课时,这节是第一课时

  七、教学设计

  (一)创设情境,导入新课[:学≈科≈网Z≈X≈X≈]

  电脑显示教科书P17引例(设计意图:激发兴趣,燃起学生的求知欲)

  如果甲球的半径是乙球的 倍,那么甲球的体积是乙球的 。

  老师提问:地 球、木星、太阳可以近似地看做是球体。地球、木 星、太 阳的半径分别是地球的倍和倍,它们的体积分别约是地球的多少倍?

  如何解决这个问题呢?

  学生活动:由题意可知木星的体积是地球体积的 倍,太阳的体积是地球体积的 倍。

  老师: 和 所表示的数学意义是什么?哪位同学能告诉我们。

  学生: 表示3个10相乘,即 10×10×10;表示3个相乘,即

  老师:在学生回答的基础上,谁能告诉我 等于多少?

  学生: 。你能说出每一步的理由吗?

  学生:第一步是幂的乘方的意义,第二步是同底数幂的乘法性质,第三步是加法的意义。

  师:这就说明: =(板书)对吗?

  (二)温故知新,探究幂的乘方法则

  师:我们再来看一看下面的练习题如何计算?(电脑显示教材P17“做一做”的内容)。

  做一做:(把学生分成四组,独立完成下列各题,然后小组交流、讨论)

  ①指导学生独立完成(1)—(4)小题,四名同学在板上做。[:ZXX]

  ②听取学生讨论,解决问题的方法和建议,并与个别学生适当交流 。

  ③关注学生获取答案的思路和方法。

  ④引导学生在讨论与交流的基础上总结结论,引出关于幂的乘方的法则。

  老师板书:

  根据上面的板书,同学们猜一猜 = ,在学生回答的基础上板书

  老师:观察以上三个等式,你发现什么规律,这个规律能用等式来表示吗?你能验证这一等式吗?

  .

  (三)强化新知,应用法则[:学#科#网Z#X#X#]

  学生:(1)在练习本上完成以上计算,并与同伴进行交流。

  (2)学生总结,(1)、(2)、(3)直接用幂的乘方的'性质进行运算不能把幂的乘方与同底数幂的乘法混淆。第(4)题涉及到负号的乘方,计算时要注意“-”有没有参与乘方。第(5)题是幂的乘方与同底数幂的综合运算。第(6)题是利用幂的乘方运算后再合并同类项。

  八、随堂练习

  1.计算:(1) ; (2) ; (3) .

  (设计意图:让学生分组比赛,完成后交流)

  九、课堂小结

  老师:这节课你们有什么收获和体会?(设计意图:体现学生的 主体性)

  学生:我们学了幂的乘方,这与前面学过的同底数幂的乘法是有所不同的,它们相同的是底数不变,不同的是,幂的乘方是指数相乘,同底数幂的乘法是指数相加。

  十、布置作业

  习题1.5 知识技能 1.(4)、(5)、(6)

  2.(3)、(4)

  十一、板书设计

  投影幕

  板演

  1.2 幂的乘方与积的乘方

  相关概念

  十二、教学设计分析

  本节课的设计意图是让学生在探索幂的乘方的法则的过程中,经历了由“特殊”到“一般”的过程,培养了学生思维的严密性,也让学生感受了数学学习的严谨性,积累了解决问题的经验和方法。在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展。从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养。在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标。但学生学习的问题、活动较多,注意把握课堂时间。

  总之,这节课的设计是为了在整个教学过程中,能让学生主动探索、认 识数学、解决问题以及合作交流和创新意识的精神。让学生积极参与到学习活动中,能充分体现学生的主体地位

幂的乘方与积的乘方教案3

  学习目标:

  1.能说出幂的乘方的运算性质,并会用符号表示.

  2.能运用幂的乘方法则进行计算,并能说出每一步运算的依据.

  3.经历探索幂的乘方的运算性质过程,进一步体会幂的意义,从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳能力.

  学习重点:理解并掌握幂的乘方法则.

  学习难点:幂的乘方法则的灵活运用.

  学习过程:

  【预习交流】

  1.预习课本P43到P44,有哪些疑惑?

  2.104107=______,(-5)7 (-5)3=_______,b2m b4n-2m=_________,27a 3b=_______,(a-b)4 (b-a)5=_______.

  3.若4x=5,4y=3,则4x+y=________.

  4.(x4)3=_______, (am)2=________, m12=( )2=( )3=( )4,(a2)n (a3)2n=_______.

  【点评释疑】

  1.课本P43做一做.

  (am)n = amn(m,n都是正整数)

  幂的乘方,底数不变,指数相乘.

  法则说明:

  (1)公式中的底数a可以是具体的数,也可以是代数式.

  (2)注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加.

  2.课本P43到P44例1、例2.

  3.应用探究

  (1)计算:

  (2)已知a=266 ,b=355 ,c=444,比较a、b、c的大小.

  (3)已知23x+2=64,求x的值.

  (4)已知 ,求 的值.

  4.巩固练习:课本P44练习1、2、3、4、5.

  【达标检测】

  1.若ax=2,则a3x= .若y3n=3,则y9n= .

  2.若a-b=3,则[(a-b)2]3 [(b-a)3]2=________(用幂的形式表示),2381632= (结果用幂的形式表示)

  3.32 9m=3( );若4 8m 16m=29 ,则m= .

  4.已知:248n=213,那么n的值是( )A.2 B.3 C.5 D.8

  5.已知(axay)5=a20 (a0,且a1),那么x、y应满足( )A.x+y=15 B.x+y=4 C.xy=4 D.y=

  6.已知am=3,an=2,那么am+n+2的值为( )A.8 B.7 C.6a2 D.6+a2

  7.如果x满足方程33x-1=2781,求x的值.

  8.3108与2144的大小关系是 .

  9.如果2a=3,2b=6,2c=12,那么 a、b、c的关系是 .

  10. 若x=2m,y=3+4m(m是正整数),则用x的代数式表示y应是 .

  11.已知 ,求m的值.

  12. 已知x满足22x+3-22x+1=48,求x的值.

  【总结评价】

  幂的乘方,底数不变,指数相乘.

  【课后作业】

  课本P46习题8.2 1(1)(2)(3)、2、3(1)、4.

幂的乘方与积的乘方教案4

  学习目标:

  1.能说出积的乘方的运算性质,并会用符号表示.

  2.能运用积的乘方法则进行计算,并能说出每一步运算的依据.

  3.经历探索积的乘方的运算性质过程,进一步体会幂的意义,从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳能力.

  学习重点:理解并掌握积的乘方法则.

  学习难点:积的乘方法则的灵活运用.

  学习过程:

  【预习交流】

  1.预习课本P44到P46,有哪些疑惑?

  2.已知:24×8n=213,那么n的值是()A.2B.3C.5D.8

  3.长方体的长是a2cm,宽是(a2)2cm,高是a3cm,求这个长方体的体积.

  4.填上适当的代数式:(1)x3x4()=x8(2)(x-y)5(x-y)4=-[]3

  5.(1)(2)(3).

  【点评释疑】

  1.课本P44做一做.

  (ab)n==()()=anbn

  (ab)n=anbn(n是正整数)

  积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.

  2.课本P45例3.

  3.课本P45议一议.

  4.课本P41例4、例5.

  5.应用探究

  (1)计算:①(-2xx2x3)2②a3a3a2+(a4)2+(-2a2)4③()15×(315)3

  (2)用简便方法计算

  ①②

  (3)若x=2m,y=3+4m(m是正整数),用x的代数式表示y.

  (4)若2m=6,4n=8,求22m+2n的值.

  6.巩固练习:课本P45到P46练习1、2、3、4.

  【达标检测】

  1.[(-2)×106]2(6×102)2=.

  2.若(a2bn)m=a4b6,则m=,n=.

  3.(-)8494=,0.5200422004=.

  4.(-x)2x(-2y)3+(2xy)2(-x)3y=.

  5.下列计算:(1)anan=2an(2)a6+a6=a12(3)cc5=c5(4)3b34b4=12b12(5)(3xy3)2=6x2y6

  中正确的个数为()A.0B.1C.2D.3

  6.下列各式中错误的是()

  A.B.()=C.D.-

  7.等于()A.B.C.D.

  8.若则、的值分别为()A.9;5B.3;5C.5;3D.6;12

  B组

  9.若xn=5,yn=3则(xy)2n=.

  10.(-8)20030.1252002=.

  11.=()A.B.C.D.

  12.已知,则等于()

  A.B.C.D.

  13.若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小.

  【总结评价】

  积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.

  【课后作业】课本P46习题8.11(4)(5)(6)3(2)、5、6.

【幂的乘方与积的乘方教案4篇】相关文章:

乘方同步测试及答案01-22

杨幂的经典台词04-07

同底数幂的除法说课稿11-12

积的近似数教学反思01-12

杨幂《北爱插曲》歌词10-18

空间向量的数量积及其应用说课11-16

品德与社会的教案课件05-16

论积件思想构建网络课件的意义05-15

王维《过香积寺》赏析11-09

王维过香积寺评析12-11