分数乘法教案范文合集6篇
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。那么应当如何写教案呢?下面是小编为大家整理的分数乘法教案6篇,仅供参考,欢迎大家阅读。
分数乘法教案 篇1
《分数乘法》
教学目标和要求
1、结合具体情境,在操作的基础上探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;
3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系,分数乘法
(三)教案。教学重点
1、在具体情境中探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;教学难点本课的难点让学生通过折纸来解决,这一动手活动让学生充分理解了分数乘法的算理,帮助学生推导分数乘分数的计算法则。
教学准备
1、每人准备一条约10厘米长的纸条;
2、每人准备2张长方形的纸。
教学过程一、探索分数乘分数的意义和计算方法。
1、直接引入庄子这个故事,先让学生读一读教科书第7页的一段话。PPT出示。让学生紧接着思考这个问题“一尺之捶,日取其半,万世不竭”到底是什么意思。在学生理解了这句话的意思之后,提问:“庄子老人家这句话到底对不对呢?”“我们能不能来验证一下呢?”。
⑴拿出一张纸条当作一尺之捶,同学们先把纸条对折了一次。师:“现在的一半我们可以用多少来表示啊?”生:“ ”师:剪去一半,还剩下多少?这时“ ”表示什么意思呢?剩下的占这张纸的“ ”用算式表示:1*1/2师:请同学们再把剩下的“ ”对折一下,再剪去一半(得到四分之一)谁能说说这又表示什么意思呢?”生“就是再取一半的意思”“是在原来一半的基础上再取一半”“就是的师重复:这部分表示的是二分之一的二分之一。师:“根据前面所学过的内容,你能用一个算式表示出剩下部分占这张纸的几分之几吗?”学生很快就写出了1/2×1/2。再引导学生认识这个乘法算式所表示的意义。师问:为什么用乘法计算?这个算式表示什么意思?得数是多少?学生列出算式后,引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。师再问:“如果我们按照庄子的说法那接下去该怎么求呢?”学生答“再乘1/2”得到1/4×1/2=1/8,如果再往后求还剩下多少,那就再乘1/2 ,“一直乘下去,永远也乘不尽”现在你们知道万世不竭的意思了吧。
2、折一折,涂一涂让学生拿出课前准备好的一张长方形纸,按照教科书的要求(PPT出示)折一折,涂一涂。讨论:
(1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?你能用算式表示出这幅图的意思吗?3/4×1/4=3/16,就是求3/4的1/4是多少?
(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?
学生独立完成,并列式汇报
3、做一做:根据图示,想一想,列出算式,算出结果。
1/2×1/4=1/2×3/4=
二、讨论小结分数乘分数的计算方法观察上面的例子,你发现积的分子、分母与两个因数的分子、分母各有什么关系?在小组内交流。说一说:你能总结分数与分数相乘的计算方法吗?小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。想一想:此法与分数与整数相乘的方法有矛盾吗?
三、巩固练习:
1、P7做一做
2、P8试一试:强调,能约分的要先约分。
3、提高练习:
(2)教科书第9页数学故事“唐僧分瓜”。通过这节课的学习,你有什么收获?通过这节课的学习,我们知道了分数乘法的意义就是求这个数的几分之几是多少;计算分数乘法时,要把分子相乘的积作分子,分母相乘的积作分母。板书设计分数乘法
(三)1 *1/2=1/21的1/2是多少?
3/4*1/4=3*1/4*4=3/161/2*1/2=1/41/2的1/2是多少?
1/4*3/4=……… =3/161/4*1/2=1/81/2*1/4=………=1/8………1/2*3/4=………=3/83*3/4=3/1*3/4=9/4
分数乘法教案 篇2
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
××××
14×15×××5
2、计算
××427×
过程要求:
(1)请三位学生上台板演,其余学生做在练习本上。
(2)集体反馈,学生计算过程。
(3)着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1)提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2)将结果写在书上。
2、第6题
(1)认真审题,弄清题意。
(2)分别说明三个问题各属于什么类型的问题。
(3)列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1)学生判断正误,并说明原因。
(2)改正算式。
6、第10题
(1)学生列式计算,教师巡视进行个别指导。
(2)说一说你有什么体会。
三、课后作业设计:
一、计算。
×××14×
×120××24×18
二、列式计算
1、米的是多少米?
2、千克的是多少千克?
3、吨的是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,小时行驶多少千米?
2、一个长方体长米,宽米,高米,它的体积是多少立方米?
课后反思:
分数乘法教案 篇3
教学内容:
分数乘法
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算出分数乘以分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)
二、课堂练习
学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?
学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。
学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。
学生做第4题,让学生能够学会比较 的 和 占整体1的大小。
学生做第5题,教师注意让学生整体的几分之几是多少?
学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。
学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。
第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
是整个操场 1的 , 是整个操场1的 。
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
分数乘法教案 篇4
教学目标
1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。
2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。
教学重点和难点
1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。
2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。
教学过程
(一)复习准备
1.谈话、提问。
我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?
为什么呢?
分5份后取其中的2份是多少。)
当一个数乘以分数时求的是什么?
(一个数乘以分数就是求这个数的几分之几是多少。)
2.口述下列算式的意义。
求一个数的几分之几是多少怎样列式呢?
3.列式。
(二)学习新课
1.出示例1。
2.分析题意。
(1)读题,找出已知条件和所求问题。
(2)分析已知条件。
①谈话提问:
题中有两个已知条件,其中学校买来100千克白菜是已知学校买来
那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。
③汇报讨论结果。
均分成5份,吃了的占其中的4份。)
④那么我们应把谁看作单位1?(100千克)
⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?
3.列式解答。
(1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?
10054=80(千克)
1005求的是什么?再乘以4呢?
(2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?
所以把谁看作单位1?(100千克)
根据一个数乘以分数的.意义应怎样列式?
答:吃了80千克。
4.课堂练习。
队的有多少人?
(1)读题,找出已知条件和问题。
(3)请你们以小组为单位进行分析,并画出线段图,解答出来。
(4)反馈。
说一说你们小组的分析思路及解答方法。
是多少。)
5.小结。
刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?
(分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)
6.下面我们来看这样一道题,看看它与上面的题有什么不同?
(1)出示例2。
(2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高
(3)分析、画图。
①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)
②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)
③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?
(4)看图列式。
少。)
②怎样列式解答?
7.改动上题,你能独立分析吗?
米?
(2)画图分析解答。
(3)提问反馈:
①把谁看作单位1?
②小林身高怎样用线段图表示?
③求小林身高就是求什么?
求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。
(三)课堂总结
例1、例2有什么相同点和不同点?
(四)巩固反馈
(画图,解答)
球价格多少元?
3.对比练习:
少元?
(五)布置作业
20页第1~5题。
课堂教学设计说明
本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。
例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。
例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。
分数乘法教案 篇5
教学内容:
教科书15页,例2及做一做 ,练习四8─10题。
教学目的:
(1)、会画线段图分析分数乘法两步应用题的数量关系。
(2)、掌握分数两步连乘应用题解答方法,并能正确解答。
(3)、进一步培养学生初步的逻辑思维能力。
教学重点:分析分数乘法两步应用题的数量关系。
教学难点:抓住知识关键,正确、灵活判断单位1。
教学过程:
(一)、复习引入:
1、先说说各式的意义,再口算出得数。
╳ ╳
2、指出下面含有分数的句子中,把谁看作单位1。
(1)乙数是甲数的 。(甲数)
(2)乙数的 相当于甲数。(乙数)
(3)大鸡只数的 等于小鸡的只数。(大鸡)
(4)大鸡的只数相当于小鸡的 。(小鸡)
(二)、探究新知:
1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
(1)审题:
全体默读,再指名读,说出已知条件和问题。
师生边讨论边画出线段图。
先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?
(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)
然后画一条线段表示谁储蓄的钱数?画多长?根据什么?
(又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。
小亮
18元
?元
?元
小华
小新
(2)分析数量关系:
引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?
也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?
(3)确定每一步的算法,列出算式。
怎么求小华的钱数?
根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。
板书:18╳ =15(元)
怎么求小华的钱数?
根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。
板书:15╳ =10(元)
把上面的分步算式列成综合算式:
板书:18╳ ╳ =10(元)
(4)检验写答:
答:小新储蓄了10元。
2、做一做。
学生独立画出线段图,教师巡视指导。
3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。
(三)、课堂练习:
独立完成练习四的第8、9、10题。
板书设计:
例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
小亮
18元
?元
?元
小华
小新
18╳ =15(元)
15╳ =10(元)
18╳ ╳ =10(元)
答:小新储蓄了10元。
分数乘法教案 篇6
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、培养学生大胆猜测,勇于实践的思维品质。
教学重点:
会进行分数的混合运算,运用运算定律进行简便计算。
教学难点:
灵活运用运算定律进行简便计算。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1、运算定律。
我们在四年级时学习过乘法的运算定律,同学们还记得吗?
(学生回答,教师板书运算定律)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
2、这些运算定律有什么用处?你能举例说明吗?
2574 0.36101
(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)
二、自主探究(自主学习,探讨问题)
1、引入
同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。
(板书课题:整数乘法的运算定律能否推广到分数乘法)
2、推导运算定律是否适用于分数。
(1)学生发表对课题的见解。
(2)验证
有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)
3、教学例5.
(1)出示: ,学生小组合作独立解答。
4、教学例6.
(1)出示: ,学生小组合作独立计算。
(2)小组汇报学习成果,说一说你们组应用了什么运算定律。
5、小结
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
三、拓展总结(应用拓展,盘点收获)
1、完成练习三的第6题。
学生说一说应用了什么运算定律。
2、完成课本第10页的做一做题目。
其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。
3、总结
这节课你有什么收获?
【分数乘法教案范文合集6篇】相关文章:
分数乘法教案范文合集7篇01-15
分数乘法教案范文合集10篇01-11
分数乘法教案01-19
分数乘法教案范文五篇01-02
分数乘法教案汇总八篇12-31
关于分数乘法教案汇编五篇01-19
分数乘法教案集锦10篇01-18
有关分数乘法教案汇编8篇01-18
有关分数乘法教案汇编六篇01-08
分数乘法教学反思范文【3篇】12-25