第一册正余弦函数的图象

时间:2021-11-27 19:18:13 教案 我要投稿

第一册正余弦函数的图象

  单位:河南省济源市第一中学

  作者:石明秀

  时间:20xx年9月9日

  一、教材分析:

  本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。为今后学习正弦型函数y=Asin(ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础。因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。

  二、学情分析:

  在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础。动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。

  三、教学目标:

  依据教学大纲的要求,制订如下三维教学目标:

  知识目标是:

  1、理解几何法作图原理(难点);

  2、掌握五点法作图(重点);

  3、了解三角函数图象的变换作图。

  能力目标是:通过识记正、余弦曲线的形状特征,培养学生分析问题、解决问题的能力;强化学生"数形结合"的数学思想。

  发展目标是:教给学生灵活的思维方法,培养学生的学习兴趣和勇于探索、勇于创新的精神,提高综合素质。

  四、设计理念:

  教无定法,贵在得法。诱思探究学科教学论认为:在教学思想上是启发式,在教学过程上是探究式,在教学价值上是发展式。德国教育学家第斯多惠也曾说过:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。为了充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,充分让学生参与教学活动。同时利用多媒体电教手段提高学生的学习兴趣。采用启发、引导和学生探究、实践、体验相结合的教学方法;教给学生“多动手、勤动脑、敢猜想、善发现、重体验、促发展”的学习方法。体现“教师是主导,学生是主体”的教学原则。使学生不但“学会”而且“会学”,并逐步感受到数学的美,产生成就感,从而极大地提高对数学的学习兴趣。也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

  五、教学程序:

  本节课的教学过程设计,主要是从“三性”即“课堂流程的可操作性,知识目标的可接受性,学生主动学习的积极性”考虑的,对整个教学过程作如下安排:

  教学程序图如下:

  第一部分:导入。先复习以前学过的函数图象的作法——描点法,再让学生观察波动图象演示仪,激起学生的兴趣。指出这种形状的曲线就是今天要研究的正、余弦函数的图象。如何作出该曲线呢?

  以设问和探索的方式导入新课,创设情境,激发思维,让学生带着问题,有目的'地参与下列教学活动。

  第二部分:几何法作图。引导学生在单位圆中作出特殊角的三角函数线,并进行平移,描点作图。先作出y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,再依据诱导公式一平移图象得出y=sinx,x∈R的图象。同法得出y=cosx,x∈R的图象。

  第三部分:多媒体展示。教师利用多媒体展示用Flash动画制作的课件,规范作图过程和步骤,统一认识y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,在此提醒学生在直角坐标系中,横、纵坐标轴的长度单位必须一致。否则画出的图象不是正弦函数的真实面貌。

  第四部分:“五点法”作图。曲线形成后,让学生观察图象的形状特征,分析讨论,提炼出五个关键点,归纳出“五点法”作图步骤。

  第五部分:总结。让学生自己总结本节课的重点、难点和学习目标,教师再补充。这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用。

  如此设计,联系了新旧知识,体现了从特殊到一般,再由一般到特殊的认知规律.在这种螺旋式上升的过程中,学生将通过自己的亲自动手实践,不仅学到本节课的知识,而且还将提高思维水平和认知能力。同时也体现了"教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展"的教学思想。同时在教学过程中配以多媒体课件的展示,图文并茂,简洁明快,充分调动学生的各个感官,使学生学的生动,学的有趣,增大课堂容量,提高课堂效率。

  为了突破几何法作图这个难点,制作了多媒体课件,将y=sinx,x∈R和y=cosx,x∈R图象的作法分解为三个问题来解决,降低了难度。通过展示课件,生动形象地再现三角函数线的平移和曲线形成过程。使原本枯燥地知识变得生动有趣,激发学生的兴趣,调动学生的积极性(通过教学也的确是这样的)。及时让学生跟着演示作图,提高学生的动手能力、模仿能力、创造能力。直观的动画,不仅使学生愉快地接受新知识,而且将激发学生的创造性思维和想象力,使学生充分发挥其思维潜能,拓展思维空间。

  用“三步曲”来突出“五点法”作图这个重点。第一步设疑:“几何法作图。由于取点个越多,画出的图象也就比较精确,但也较为麻烦。在精确度要求不高的前提下,能否少定一些点,作出其简图呢?”问题的提出可以立刻抓住学生的好奇心,激起学生强烈的求知欲。第二步引导:让学生观察正弦函数y=sinx,x∈[0,2π]和余弦函数y=cosx,x∈[0,2π]的图象,启发哪些点对决定图象的形状起着关键的作用呢?引导学生寻找出五个关键点。体现教师的主导作用;第三步小结:让学生分组讨论,互相补充,归纳出五点法作图步骤。教师对学生讨论的情况作出评价并指出作图应注意的问题,然后小结:“五点法”可以比较简捷地作出正弦、余弦函数的草图,对于以后研究正弦、余弦函数的性质将起到重要的作用。这样设计体现了“多动手、勤动脑、敢猜想、善发现”的学习方法,使学生真正成为教学的主体。

  应用:画出下列函数的简图:

  (1)y=1+sinxx∈[0,2π];

  (2)y=-cosxx∈[0,2π].

  解:(1)按五个关键点列表:

  利用正弦函数的性质描点画图(如下图).

  (2)按五个关键点列表:利用余弦函数的性质描点作图(如下图).

  反馈练习:

  1.在同一坐标系中用五点法分别画出函数y=sinx,x∈[0,2π]和y=cosx,x[-,]的简图.通过观察两条曲线,后者经过怎样平行移动就可以得到前者?

  2.观察正弦函数和余弦函数,写出满足下列条件的x的区间:

  (1)sinx>0(2)sinx<0(3)cosx>0(4)cosx<0

  (例题、练习都用课件展示)

  本节例题仍选用教材上的例题,但解答除“五点法”之外,又引导学生利用函数图象的平移对称变换来作图。通过一题多解,可帮助学生加深对知识的认知程度,培养灵活的思维方式。学会遇到新问题时,善于调动所学过的旧知识,运用新旧知识间的联系,增强分析问题和解决问题的能力。

  反馈练习设计层次分明:练习1为巩固基础知识型,对课堂内容知识的再认识(五点作图及图象变换);练习2为提高能力型,是对正(余)弦函数图象的灵活运用,由易到难,体现因材施教重效果,循序渐进促发展的教学理念。

  最后师生共同总结,强化数形结合的数学思想,使学生的理论达到发展和升华,能力达到提高,并为相关学科的学习做好铺垫,提高综合素质。

  六、板书设计:(略)

  七、布置作业:(略)

【第一册正余弦函数的图象】相关文章:

数学教案-函数的图象12-13

余弦函数的性质说课稿11-06

一次函数图象的应用说课稿11-02

波动图象与振动图象的综合应用练习题05-29

奇函数的反函数是奇函数吗10-12

半角的正弦、余弦和正切说课稿11-05

余弦定理说课稿6篇11-12

函数与反函数关于什么对称10-12

常数函数是周期函数吗?10-12

奇函数乘奇函数等于什么10-12