高中数学备课教案

时间:2024-03-18 13:11:44 志彬 教案 我要投稿
  • 相关推荐

高中数学备课教案模板(通用8篇)

  作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编为大家收集的高中数学备课教案模板,仅供参考,欢迎大家阅读。

高中数学备课教案模板(通用8篇)

  高中数学备课教案 1

  一、教学目标:

  知识与技能:了解直线参数方程的条件及参数的意义

  过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义

  情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二、重难点:

  教学重点:曲线参数方程的定义及方法

  教学难点:选择适当的参数写出曲线的参数方程.

  三、教学方法:

  启发、诱导发现教学.

  四、教学过程

  (一)、复习引入:

  1.写出圆方程的标准式和对应的参数方程。

  (1)圆参数方程 (为参数)

  (2)圆参数方程为: (为参数)

  2.写出椭圆参数方程.

  3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?

  (二)、讲解新课:

  1、问题的提出:一条直线L的倾斜角是,并且经过点P(2,3),如何描述直线L上任意点的位置呢?

  如果已知直线L经过两个

  定点Q(1,1),P(4,3),那么又如何描述直线L上任意点的

  位置呢?

  2、教师引导学生推导直线的参数方程:

  (1)过定点倾斜角为的直线的

  参数方程

  (为参数)

  【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.

  (2)、经过两个定点Q,P(其中)的直线的参数方程为。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。

  (三)、直线的参数方程应用,强化理解。

  1、例题:

  学生练习,教师准对问题讲评。反思归纳:

  1)求直线参数方程的方法;

  2)利用直线参数方程求交点。

  2、巩固导练:

  补充:

  1)直线与圆相切,那么直线的倾斜角为(A)

  A.或 B.或 C.或 D.或

  2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则 .

  解:直线化为普通方程是,该直线的斜率为,直线(为参数)化为普通方程是,该直线的.斜率为,则由两直线垂直的充要条件,得, 。

  (四)、小结:

  (1)直线参数方程求法;

  (2)直线参数方程的特点;

  (3)根据已知条件和图形的几何性质,注意参数的意义。

  (五)、作业:

  补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______

  【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

  解析:由题直线的普通方程为,故它与与的距离为。

  五、教学反思:

  略

  高中数学备课教案 2

  一、教学目标

  知识与技能:

  理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:

  任意角概念的理解;区间角的.集合的书写。

  教学难点:

  终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  回顾角的定义

  ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  高中数学备课教案 3

  一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的作用

  二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

  三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

  四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的.空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

  高中数学备课教案 4

  教学目的:

  知识目标:

  了解在柱坐标系、球坐标系中刻画空间中点的位置的方法

  能力目标:

  了解柱坐标、球坐标与直角坐标之间的变换公式。

  德育目标:

  通过观察、探索、发现的创造性过程,培养创新意识。

  教学重点:

  体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系

  教学难点:

  利用它们进行简单的数学应用

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学.

  教具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。

  问题:如何在空间里确定点的位置?有哪些方法?

  学生回顾

  在空间直角坐标系中刻画点的位置的方法_科_网]

  极坐标的意义以及极坐标与直角坐标的互化原理

  二、讲解新课:

  1、球坐标系

  设P是空间任意一点,在oxy平面的射影为Q,连接OP,记|OP|=,OP与OZ轴正向所夹的角为,P在oxy平面的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为,点P的位置可以用有序数组表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系)

  有序数组叫做点P的球坐标,其中≥0,0≤≤,0≤<2。

  空间点P的直角坐标与球坐标之间的变换关系为:

  2、柱坐标系

  设P是空间任意一点,在oxy平面的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点在

  平面oxy上的极坐标,点P的位置可用有序数组(ρ,θ,Z)表示把建立上述对应关系的坐标系叫做柱坐标系

  有序数组(ρ,θ,Z)叫点P的柱坐标,其中ρ≥0,0≤θ<2π,z∈R

  空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,Z)之间的变换关系为:

  3、数学应用

  例1建立适当的球坐标系,表示棱长为1的正方体的顶点.

  变式训练

  建立适当的.柱坐标系,表示棱长为1的正方体的顶点.

  例2.将点M的球坐标化为直角坐标.

  变式训练

  1.将点M的直角坐标化为球坐标.

  2.将点M的柱坐标化为直角坐标.

  3.在直角坐标系中点>0)的球坐标是什么?

  例3.球坐标满足方程r=3的点所构成的图形是什么?并将此方程化为直角坐标方程.

  变式训练

  标满足方程=2的点所构成的图形是什么?

  例4.已知点M的柱坐标为点N的球坐标为求线段MN的长度.

  思考:

  在球坐标系中,集合表示的图形的体积为多少?

  三、巩固与练习

  四、小 结:本节课学习了以下内容:

  1.球坐标系的作用与规则;

  2.柱坐标系的作用与规则。

  五、课后作业:教材P15页12,13,14,15,16

  六、课后反思:本节内容与平面直角坐标和极坐标结合起来,学生容易理解。但以后少用,可能会遗忘很快。需要定期调回学生的记忆。

  高中数学备课教案 5

  第四课时:圆锥曲线参数方程的应用

  一、教学目标:

  知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题

  过程与方法:选择适当的参数方程求最值。

  情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二、重难点:教学重点:选择适当的参数方程求最值。

  教学难点:正确使用参数式来求解最值问题

  三、教学模式:讲练结合,探析归纳

  四、教学过程:

  (一)、复习引入:

  通过参数简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。

  (二)、讲解新课:

  例1、双曲线的两焦点坐标是。

  答案:(0,-4),(0,4)。学生练习。

  例2、方程(t为参数)的图形是双曲线右支。

  学生练习,教师准对问题讲评。反思归纳:判断曲线形状的方法。

  例3、设P是椭圆在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标。

  分析:本题所求的最值可以有几个转化方向,即转化为求的最大值或者求点P到AB的最大距离,或者求四边形OAPB的最大值。

  学生练习,教师准对问题讲评。【=时四边形OAPB的最大值=6,此时点P为(3,2)。】

  (三)、巩固训练

  1、直线与圆相切,那么直线的倾斜角为(A)

  A.或B.或C.或D.或

  2、椭圆()与轴正向交于点A,若这个椭圆上存在点P,使OP⊥AP,(O为原点),求离心率的范围。

  3、抛物线的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。

  4、设P为等轴双曲线上的一点,,为两个焦点,证明

  5、求直线与圆的交点坐标。

  解:把直线的'参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,得交点为(0,2)和(2,0)。

  (三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。

  (四)、作业:

  练习:在抛物线的顶点,引两互相垂直的两条弦OA,OB,求顶点O在AB上射影H的轨迹方程。

  五、教学反思:

  高中数学备课教案 6

  一、教学安排

  第一轮全面复习已经进入尾声,立体几何与高三选修内容准备在3月20号左右结束,也就是第一次月考之前结束第一轮复习。

  第一轮结束之后,就开始专题复习,分三块内容:函数与导数、数列与不等式、解析几何。主要是一些典型例题和相应的配套练习,当然其中也包括其它未复习到的内容,如解析几何专题中的配套练习中包括立体几何、计数原理与复数、概率与统计。5月初开始综合训练,做一份与考一份,并且留时间让学生回顾与总结,看已经做过的综合试卷。5月底是考前指导。

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  离高考还只剩100天左右时间,学生基本上能够自觉地学习。大多数学生对基本知识掌握得还可以,但老大难问题还是经常出现,就是“会而不对,对而不全”。

  三、教学目的要求

  掌握高中数学的基本知识与基本技能,能够解决一些数学问题。高考的时候大多数学生可以拿到基础分,难题也可以尝试拿点分。提高选择题与填空题的'得分率,解答题前3题尽量拿到多数的分数,最后2题也要去得点分,而不能是空白。

  四、完成教学任务和提高教学质量的具体措施

  加强备课组的集体合作与交流,每周四开一次备课会议。专题复习与综合训练结合,留一定的时间让学生反思与总结,看已经做过的综合试卷。最后是考前指导。平时还注意与学生心理的沟通,经常与学生交流,加强心理辅导。

  五、教学进度

  略

  高中数学备课教案 7

  一、教学目标

  理解函数的概念,能判断两变量之间是否具有函数关系。

  掌握函数的三种表示方法:解析法、列表法、图象法,并能进行相互转化。

  理解函数的定义域、值域的概念,并能求出简单函数的定义域和值域。

  二、教学重点

  函数的概念及三种表示方法。

  三、教学难点

  函数的定义域和值域的确定。

  四、教学过程

  导入新课

  通过实例(如气温随时间的变化、汽车行驶的距离与油耗的关系等)引出函数的概念,强调函数描述的是两个变量之间的依赖关系。

  讲授新课

  详细解释函数的概念,包括定义域、值域、对应法则等要素。

  举例说明函数的.三种表示方法:解析法(如y=x^2)、列表法、图象法,并强调它们之间的转化关系。

  通过练习题让学生练习确定函数的定义域和值域。

  课堂小结

  总结函数的概念及其性质,强调定义域和值域的重要性。

  提醒学生注意函数表示方法的灵活运用。

  作业布置

  布置相关练习题,巩固学生对函数概念及性质的理解。

  高中数学备课教案 8

  一、教学目标

  理解等差数列的概念,掌握等差数列的通项公式和前n项和公式。

  能根据题目条件判断数列是否为等差数列,并求出等差数列的首项、公差等参数。

  能运用等差数列的性质解决简单问题。

  二、教学重点

  等差数列的概念、通项公式和前n项和公式。

  三、教学难点

  等差数列通项公式和前n项和公式的应用。

  四、教学过程

  导入新课

  通过观察一组数列(如1,3,5,7,9…),引出等差数列的概念,强调等差数列的特点是每个相邻两项的差都相等。

  讲授新课

  详细解释等差数列的概念,包括首项、公差等要素。

  推导等差数列的通项公式和前n项和公式,并通过实例进行说明。

  通过练习题让学生练习判断数列是否为等差数列,并求出等差数列的首项、公差等参数。

  课堂小结

  总结等差数列的`概念、通项公式和前n项和公式,强调它们在实际问题中的应用。

  提醒学生注意等差数列性质的灵活运用。

  作业布置

  布置相关练习题,巩固学生对等差数列概念及性质的理解,并提高他们运用公式解决实际问题的能力。

  以上是两个高中数学备课教案的示例,旨在帮助学生理解函数和等差数列的基本概念及性质,并能够应用相关知识解决实际问题。在实际教学中,教师可根据学生的实际情况和需要进行适当的调整和完善。

【高中数学备课教案】相关文章:

高中数学备课组工作计划07-06

高中数学备课组工作计划02-16

准备课的教案12-01

英语备课教案11-27

《社戏 》备课教案08-25

《翠鸟》备课教案01-04

教学备课教案02-07

语文备课教案11-12

备课与教案通用03-08

集体备课教案12-23