五年级数学教案《位置》

时间:2021-09-27 20:07:07 教案 我要投稿

五年级数学教案《位置》

  作为一名教学工作者,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?下面是小编精心整理的五年级数学教案《位置》,仅供参考,欢迎大家阅读。

五年级数学教案《位置》

五年级数学教案《位置》1

  第8单元 总复习

  第2课时 位置复习课

  【教学内容】:教材P114第4题及练习二十五第1题。

  【教学目标】:

  知识与技能:使学生能够准确地、熟练地用数对表示位置。

  过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。

  情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。

  【教学重、难点】

  重 点:用数对确定位置。

  难 点:培养学生灵活运用知识的能力。

  【教学方法】:组织练习,质疑引导。练习体验,小组交流。

  【教学准备】:多媒体。

  【教学过程】

  一、练习导入

  1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:

  已知(1,4)表示小亮的位置。

  ⑴小明、小丽和小红的位置用数对分别可以表示为( , ),( , ),( , )。

  ⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。

  ⑶从小明的位置向左数2列,再向后数1行就是小强的位置,小强的位置是( , )。

  2.下面是一幅街区平面图,请看图回答问题。

  五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。

  ⑴像上面那样描述一下其他建筑物的位置。

  ⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的位置。

  ⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。

  二、回顾整理

  1.行和列的意义:竖排叫列,横排叫行。

  2.数对可以表示物体的位置,也可以确定物体的位置。

  3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。

  4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。

  三、巩固拓展

  1.运用平移的方法加深用数对确定物体的位置。

  按要求完成题目。 (答案:数对略)

  (1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?

  (2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。

  学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。

  2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的.棋子的具体位置吗?

  学生观察图片,独立思考,同桌交流,然后指名汇报。

  四、课后小结

  位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。

  五、作业:教材第115页练习二十五第1题。

  【板书设计】

  位置复习课

  竖排叫列,横排叫行。 先表示列,再表示行。

  物体向左、右平移,行数不变,列数减去或加上平移的格数。

  物体向上、下平移,列数不变,行数加上或减去平移的格数。

五年级数学教案《位置》2

  教学目标

  1、结合教材提供的素材自主探索确定位置的方法,并能利用方格纸依据两个数据确定物体的位置。

  2、进一步渗透数形结合的思想和方法,感悟数对与位置一一对应思想。

  3、初步建立坐标系的概念,感受数学与生活的联系。

  教学重难点

  1、能运用数对表示指定的位置。

  2、在方格纸上画出指定图形或地点的位置。

  教学过程:

  一、复习铺垫

  提问:怎样用数对表示物体的位置?

  用数对表示物体的位置,要先确定列数,再确定行数,即(列数,行数)。

  【设计意图】

  通过复习用数对表示位置的方法,让学生明确要先确定列数,再确定行数,为学习新知做好铺垫。

  二、探索新知

  1、学习例2。

  (1)引导学生理解图意。

  横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

  (2)师谈话引出问题。

  不仅找座位需要确定位置,看图时我们也要确定位置。这张动物园图很清楚地表示了每个场馆的位置,你能说出这个场馆分成了几行几列吗?(0表示列和行的起始)

  (3)用数对表示位置。

  用(3,0)表示大门的位置,熊猫馆的位置该怎样表示?你能表示出其它场馆所在的位置吗?

  大象馆(xx)猴山(xx)海洋馆(xx)。

  (4)在图上表示场馆的位置。

  出示飞禽馆(1,1),学生说明位置后,再在图上标出位置。

  学生独立标出猩猩馆(0,3),狮虎山(4,3)的位置,然后再投影订正。

  2、请同学们仔细观察同一行或同一列的数对,有什么地方相同,什么不同?

  小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  3、适时练习:完成教材第20页“做一做”第1、2题。

  学生独立完成,集体讲评。

  4、小结:想一想:怎样在方格纸上用数对确定物体的位置?

  在方格纸上用数对确定物体的位置,先找出数对表示的是第几列,第几行,然后在列数与行数相交处描点,标上名称。

  【设计意图】

  充分利用学生已有的生活经验和已学过的知识,让学生通过实际操作,会根据题目中所给数对在方格纸上确定具体物体的位置。

  三、巩固练习

  1、根据数对,在方格上标出各种动物的位置。

  熊猫(2,1)、小兔(3,4)、小猫(2,4)、小狗(3,1)

  2、完成练习五第3题。

  让学生对照数对涂方格,涂描后教师展示学生的进行对照。

  3、完成练习五第5题。

  让学生理解国际象棋在棋盘上表示棋子位置的规则,并会用数对确定棋子的位置。

  四、课堂总结

  谈谈今天你的收获?

  教后思考:

五年级数学教案《位置》3

  1、教学目标

  1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;

  2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  2、学情分析

  从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  3、重点难点

  教学重点:

  体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。

  教学难点:

  观察者角度的理解,方格线上和方格中位置描述的异同理解。

  4、教学过程

  4.1教学过程

  4.1.1教学活动

  活动1【讲授】用数对确定位置

  一、探讨描述位置两要素

  师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生

  第一关:找地鼠

  师:请描述小地鼠的位置。

  师:还能怎么说?

  生:从右往左数第2个。

  师:这只地鼠的位置呢?

  生:从上往下数第3个,从下往上数第2个。

  师:看来,描述一条线上的位置,我们只需要一个数。

  师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?

  师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?

  师:你来说,谁有不同的说法,还有吗?

  师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。

  师:(面向猜的同学)听了这么多说法,能猜到位置吗?

  师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)

  师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)

  二、从列和行引出数对确定位置

  师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。

  师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?

  师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。

  师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。

  师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。

  师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……

  师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。

  师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。

  师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。

  师:这些都是张亮位置的描述方法,你喜欢哪一种?

  (1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。

  师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)

  师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。

  师:剩下的三个位置也用数对表示吧。写在草稿纸上。

  师:四个数对中有两个比较特别,谁来说?

  师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。

  师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。

  师:你是怎样判断的?

  师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)

  三、点子图中的位置表示

  师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。

  师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?

  师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。

  师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。

  师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)

  师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。

  师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。

  四,数对的日常运用

  师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。

  国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)

  这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)

  师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛

  五、拓展总结。

  师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)

  生:需要两个数。

  师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。

  师:什么情况下我们用一个数就能确定位置?(直线上的)。

  师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。

  师:听听X先生对大家的最终评价吧。

  师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。

【五年级数学教案《位置》】相关文章:

五年级上《位置》教学设计12-18

位置与方向11-16

拼音音标位置口诀04-19

橱窗位置租赁合同01-15

副词的用法和位置10-12

澳大利亚纬度位置10-12

三峡大坝位置10-12

人教版小学五年级数学教案01-15

妙不可言的位置说课稿11-05

确定位置教案五篇01-01