苏科版八上 课题:2.1勾股定理2教案

时间:2021-07-29 12:57:55 教案 我要投稿

苏科版八上 课题:2.1勾股定理(2)教案

  作为一名教师,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么优秀的教案是什么样的呢?下面是小编精心整理的苏科版八上课题:2.1勾股定理(2)教案,希望对大家有所帮助。

苏科版八上 课题:2.1勾股定理(2)教案

  学习目标:

  1、通过拼图,用面积的方法说明勾股定理的.正确性.

  2、通过实例应用勾股定理,培养学生的知识应用技能.

  学习重点:

  1.用面积的方法说明勾股定理的正确.

  2. 勾股定理的应用.

  学习难点:

  勾股定理的应用.

  学习过程:

  一、学前准备:

  1、阅读课本第46页到第47页,完成下列问题:

  (1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的20xx年国际数学家大会(TCM-20xx)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?

  2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)

  二、合作探究:

  (一)自学、相信自己:

  (二)思索、交流:

  拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和

  (三)应用、探究:

  1、如图 ,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?

  (四)巩固练习:

  1、如图,64、400分别为所在正方形的面积,则图中字

  母A所代表的正方形面积是 _________ 。

  三.学习体会:

  本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

  2②图

  四.自我测试:

  五.自我提高:

【苏科版八上 课题:2.1勾股定理2教案】相关文章:

苏科版勾股定理说课稿06-10

沪科版勾股定理说课稿06-10

教科版五上《风》教案12-26

教科版《苏红的画》说课稿08-24

苏科版重力教学设计范文04-16

苏科版摩擦力说课稿06-10

北师版八上《勾股定理》说课稿范文(通用5篇)04-15

有关苏版《边城》教案11-13

语文版八上《游恒山记》教案2篇02-11