《列方程解应用题》教案(精选3篇)
作为一无名无私奉献的教育工作者,常常需要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?下面是小编为大家整理的《列方程解应用题》优秀教案范文(精选4篇),欢迎阅读与收藏。
《列方程解应用题》教案1
教学目的
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.
2.通过复习,使学生能够准确的找出题目中的等量关系及发现生活中的等量关系,总复习:列方程解应用题。
3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.
4.通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系。
教学重点
通过复习,使学生能够准确的找出等量关系.
教学准备
调查表的各项内容,学生需提前一天认真调查,填写。
教学过程:
一、创设情境:我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比如,我知道班长林端13岁,体育委员江莹莹14岁,你们猜猜,陈老师今年有多少岁?
二、沟通整理,复习。
1、理一理,复习列方程解应用题的一般步骤及关键。
(1)让我用应用题的方式告诉你们:班长林端13岁,体育委员江莹莹14岁,他们岁数之和是陈老师的,陈老师今年多少岁?(板书)
(2)你能用方程方法解答这一题吗?(反馈)今天,我们将通过了解陈老师,一起交朋友的办法来复习列方程解应用题。(板书课题:总复习:列方程解应用题)
(3)过渡:结合解的过程,回忆一下,列方程解应用题有哪几个步骤,并写在笔记中。
(4)反馈:谁来说说?(师简单板书各步。)哪一步是列方程解应用题的关键?(划出第二步)
(5)过渡:列方程解应用题的关键是找数量间相等关系,等量关系找到了,问题就迎刃而解了,陈老师有多个找等量关系的绝招,这些绝招就隐藏在陈老师的“自我介绍”中。
2、了解找等量关系的途径,优选方程方法。
(1)找等量关系,并写出来。
“自我介绍”
副班长体重35千克,比陈老师体重的多5千克,陈老师体重多少千克?
陈老师爱好种花,去年种了一批,大旱后死了三分之一,过冬时又死了6棵,最后还剩10棵,求去年种了多少棵?
陈老师家门口有一长方形的鱼塘,周长24米,长7米,那宽多少米?
陈老师节约用钱,去年还存了5000元,存期一年,利率2,今年取款时银行应多付我多少元?
(2)生逐题回答等量关系,师生共同小结:找等量关系可以根据什么去找?(根据关键句或重点词句找等量关系;按照事理以及根据事情发展感变化的情况找等量关系;利用常见的数量关系和计算公式找等量关系,小学数学教案《总复习:列方程解应用题》。)
板书:1,关键字词。“比”“是”“多”“少”
2,事情发展。
3,计算公式。
4,常见的数量关系。
(3)学生利用调查表举例说等量关系。
(4)利用等量关系解答各题。(提醒学生注意第四题的要求)---想想用方程解容易还是算术解容易,拣容易的方法做。
(5)生独立回答各题。
(6)比较等量关系中的未知数位置,自主发现最后一题的未知数单独在等号的另一端,所以用算术解容易,而其余各题的未知数与已知数混在一起,用方程解较容易。
(7)第一题你还可以列出什么方程?等量关系是什么?
(8)你认为哪种方程最容易想?(小结:对了,一道题可以列出多种方程,我们要选择最容易想的方程。)
(9)过渡:其实,找到等量关系后,这些应用题都可以用算术方法解,比如就第一题算术方法怎样解?谁会分析?(领会等量关系中未知数与已知数混在一起的,通过进一步分析后,也可找到算术解,即逆向思考,较困难,看来,遇到需逆向思考的问题时,用方程解比用算术方法解更容易想一些)
3、比较用方程解和用算术方法解的不同及其本质。
(1)先观察这一题的方程解法和算术方法解法,然后回忆一下,再四人小组讨论并合作填写下表:
应用题方程解法与算术解法异同点
方程解法
算术解法
相同点
都要找准
不
同
点
1未知数
未知数
2根据——,直接列出
对——进行再分析,列出
4、小结过渡:
(1)小结:今天复习了什么?你有什么收获?
(2)刚刚通过了解老师复习了列方程解应用题,下面要进行练习与提高了,陈老师很想通过了解同学们的方式进行,行吗?
三、练习拓展:
1、拓展、开放性练习
(3)同学们已经搜集了很多自己的数据,要求同学们也得学着老师,用应用题的方式介绍自己。
(4)请每组选择本组的数据编一道应用题,要力争让同学们选自已的题目去做,不能太难,也不能太容易,具体请看要求。
1、每前后4人一小组,由小组组长负责;
2、要充分发挥本组集体的力量,合作完成;
3、看看哪一小组的题目具有现实性、挑战性、新颖性,完成速度快。
(1)小组合作完成后,小组互评,订正,展示,适当评讲。
(2)四种情况分别请同学汇报。随机评讲。
2、了解学校和社会,应用性、提高性练习:
找等量关系
我校学生610人,其中女生约占48,我乡最高峰是莲花峰,海拔1200米,比泰山矮,我乡总人口,约占全县人口的,
练习:(间接设x)我县的东南汽车厂去年上半年完成了全年计划产量的,下半年又生产了43000辆,实际全年超产了,求东南汽车厂去年生产了几辆汽车?
《列方程解应用题》教案2
教学目标
(一)掌握列方程解应用题的一般步骤,会用列方程的方法解答比较容易的两步计算的应用题。
(二)掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点和难点
重点:学会用列方程的方法解答应用题。
难点:掌握根据题意找出数量间的相等关系的方法。
教学过程设计
(一)复习准备
1.用两种方法解答下题(投影出示):
商店原有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?
学生解答后,订正。
学生讲解为什么这样做,根据是什么?
解法1:
根据:卖出的重量+剩下的重量=原来的重量。
列式:35+40=75(千克)
解法2:
根据:原有的重量-卖出的重量=剩下的重量。
解:设原来有x千克。
x-35=40
x=40+35
x=75(千克)
答:原来有75千克饺子粉。
2.观察比较:以上两种解法有哪些相同点和不同点?
相同点:都是根据数量间的相等关系列式。
不同点:解法1:以已知推出未知,是算术法。解法2:把未知数用x表示,列出含有未知数的等式。
教师讲解:像解法2中的含有未知数的`等式,实际上就是方程,解法2实际上就是列方程解应用题。
(二)学习新课
1.揭示课题:
今天我们一起学习用方程解答一些步数较多的应用题。
思考:
①什么是方程?
②列一个方程必须具备哪几个条件?(①等式;②含有未知数。)
2.学习例1。
(1)将复习题中第一个直接条件改为间接条件,使之成为例1。
商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?
(2)找出方程所需要的两个条件。
学生思考、讨论得出:
①原来的重量是未知数,可以把它设为x。
②根据题目的叙述顺序,找出数量间的相等关系:
原有的重量-每袋的重量卖出的袋数=剩下的重量
(x千克)(5千克)(7袋)(40千克)
(3)根据等量关系列方程,解方程。
学生试做:
解:设原有x千克。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(4)检验:
怎样检验?
①可检查方程是否符合题意。
②把解得的x的值代入原方程,看解得对不对。
③也可用算术法进行检验。
学生按以上方法进行检验。
(5)试做:商店原有15袋饺子粉,卖出35千克,还剩40千克,每袋多少千克?
学生试做后讲解。
解:设每袋饺子粉x千克。
列方程:15x-35=40
15x=40+35
15x=75
x=5
答:每袋饺子粉5千克。
(6)小结:列方程解应用题的解题步骤是怎样的?
讨论后得出:
①弄清题意,找出未知数,并用x表示;
②找出应用题中数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
3.学习例2小青买2节五号电池,付出6元,找回了0.4元。每节五号电池的价钱是多少元?
(1)审题:已知什么条件,求什么问题?可把题目中的什么数量看作一个整体?(可将买2节电池的钱看作一个整体。)
(2)思考讨论:这道题的数量之间存在什么样的相等关系?
(3)学生试做后讲解:
解:设每节五号电池的价钱是x元。
①根据:
列方程:6-2x=0.4
2x=6-0.4
2x=5.6
x=2.8
②根据:
列方程:6-0.4=2x
5.6=2x
2.8=x
③根据:
列方程:2x+0.4=6
2x=6-0.4
2x=5.6
x=2.8
(4)检验:(略)
(5)小结:
这道题为什么能列出三个方程呢?(因为题中的三种数量之间存在着三个基本的相等关系,每个相等关系就可列出一个方程,三个相等关系就可列出三个不同的方程。)
说明根据对题目的不同理解,可以找出不同的等量关系,列出不同的方程。
4.总结:
从以上几道题可以看出,列方程解应用题有什么特点?(用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解出来。)
(三)巩固反馈
1.用含有字母的式子表示:
(1)每袋大米x千克,5袋大米()千克;
(2)每个练习本x元,小明买8个练习本,应付()元;
(3)每套桌椅x元,10套桌椅()元;
(4)每箱水果x千克,25箱水果()千克。
2.说出下面每组数量之间的相等关系。
(1)女生人数,男生人数,全班人数;
(2)苹果的重量,梨的重量,梨比苹果少的重量。
3.找出题目中数量间的相等关系。
(1)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?
(2)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?
4.课本:1。
根据提出找出数量间的相等关系,再把方程补充完整。
5.课后作业:P112:2,3,4。
课堂教学设计说明
本节课根据学生已有的知识基础和认知规律出发,针对新的解题思路不易接受的特点,紧紧抓住基本概念。在区别比较中,概括总结已有的思路,对比归纳新的解题思路。
为了使学生较好地掌握分析,寻找等量关系的方法,教案采取了由易到难的设计方案。例1的等量关系与复习题相同,都是按题目的叙述顺序写出的。由例1改编的练习,基本数量关系没变,重点是把15袋饺子粉的重量看作一个整体,为学习例2做了铺垫。例2的重点是引导学生找出不同的等量关系,培养学生发散思维的能力。
板书设计
(略)
《列方程解应用题》教案3
教学要求:
①使学生学会列方程解相遇问题求相遇时间的应用题,进一步认识相遇问题的数量关系
②通过两种不同解法的教学,培养学生灵活解题的能力,以及思维的发散性和灵活性
③在教学中激发学生的学习兴趣,并结合学生的生活实际,感受到数学与生活的联系,会利用数学知识解决一些简单的实际问题;
④在教学中渗透与实践胡瑗教育。
教学准备:多媒体课件
教学过程:
一、复习旧知,导入新课
⒈口头列式
①一辆汽车每小时行驶70千米,4小时行驶多少千米?
②小兵每分钟行驶60米,5分钟行驶多少米?
⒉复习:小强和小芳同时从两地出发,相对走来。小强每分钟走65米。小芳每分钟走55米,经过4.5分钟两人相遇。两地相距多少米?
生读题,列式解答。
问:你用什么方法解答的?你是怎么想的?
生回答,师。
①两地相距的米数=小强走的总路程+小芳走的总路程;
②两地相距的米数=小强和小芳每分钟一共走的路程×相遇时间
师揭示课题,引入新课
评析:复习紧扣本课知识,目的明确,效果实在,为学生学习新知奠定了良好的知识基础。
二、讲授例题,学习新课
出示例3:两地相距540米。小强和小芳同时从两地出发,相对走来。小强每分钟走65米。小芳每分钟走55米。经过几分钟两人相遇?
师让学生认真读题,比划一下例题内容,并和同学交流一下,弄清题目意思。
问:读了题目有不明白的地方?
学生提问,老师或者学生帮助释疑。
问:你刚才读懂了题目中的数量有怎样的等量关系?
生想法一:两地相距的米数=小强走的总路程+小芳走的总路程
生想法二:两地相距的米数=小强和小芳每分钟一共走的路程×相遇时间
师用课件演示学生的想法
让学生独立解答,指名板演。
集体订正,学生说己列方程的思考方法。
问:这道例题我们可以用什么方法来检验?
生叙述。
师了解例题学生完成的情况,对学习有困难的学生进行个别指导。
评析:例题教学,把主动权还给学生,学生运用已有的知识掌握例题的解题思路和解题方法,教师只是学生学习知识过程中的一个合作者。这样安排,创设了和谐的师生关系,培养了学生善于思考的习惯,提高了学生解决问题的能力。
三、巩固练习
1、练一练:
⑴两艘军舰从相距609千米的两个港口同时相对开出。一艘军舰每小时行42千米,另一艘军舰每小时行45千米。经过几小时两艘军舰相遇?
⑵甲、乙两艘轮船同时从一个码头向相反方向开出,甲船每小时行23.5千米,乙船每小时行21.5千米。航行几小时后两船相距315千米?
指名板演,让学生注意区别两艘轮船的行驶方向以及数量之间的等量关系。
2、填空:
⑴一辆轿车和一辆卡车同时从两地出发,相向而行,经过X小时相遇。已知轿车每小时行70千米,卡车每小时行65千米。70X表示(),65X表示(),70X+65X表示()。
⑵师徒二人同时加工一批零件,徒弟每天加工12个,师傅每天加工20个,两人一同做了α天。12α表示(),20α表示(),这批零件一共有()个。
3、只列方程不计算:
⑴南通和南京相距325千米。两辆汽车分别从南通和南京同时出发,相对而行。从南京开出的汽车每小时行68千米,从南通开出的汽车每小时行62千米。经过多长时间,这两辆汽车在途中相遇?
⑵甲乙两个工程队共同铺铁路,甲队每天铺70米。乙队每天铺64米。铺了多少天后,甲队比乙队多铺36米?
评析:让学生及时巩固了新课内容,学会分析相遇问题的数量关系,掌握基本的解题思路和解题方法,同时让学生把所学的新知识运用到生活中,解决生活中类似的一些常见问题,体现让数学回归生活的教学理念,有效避免了对应用题进行机械的程式化训练。
四、课堂作业:数学书第100页的1、2、3题
五、课堂:
问:(1)今天的学习有什么不懂的地方,需要老师或者同学帮助的?
(2)今天的学习你有什么收获?
评析:本课,既有知识的归纳,也有情感的交流,拉近了师生之间的距离,为下面知识的综合运用营造了良好的探索氛围。
六、综合提高,学生活动
电脑屏幕出示下图:(略)
问:这是哪儿?对了,这是我们家乡正在修建的市民广场。从图上,你获得了哪些信息?
生汇报,师注意归纳。
师:现在要在广场的四周铺设一条绿化带,准备让两个工程队共同完成。(配音:第一队每天铺20米。第二队每天铺30米)你能运用今天所学的知识,提几个问题,并解答吗?
生汇报,师对表现优异的学习小组进行表扬。
评析:本课设计,既体现了应用题教学改革的方向,也是校本课程“胡瑗教育”的一次渗透、探索与实践。主要表现在:
(1)以课本为载体,灵活运用,适当拓展,增强课堂教学的新颖性、趣味性,是对胡瑗“讲授教学法”与“娱乐教学法”新的理解与尝试,能让教学学生“旨意明白,众皆大服”,且又愉悦身心,培养学生思维的敏捷能力。
(2)在本课应用题教学中,尝试进行问题开放、解题策略开放的练习,让学生以小组合作的方式提出不同的问题,而且自己想办法解决,充分发挥了同学们的学习主动性和积极性,注意了教师的主导作用与学生的主动性相结合的原则,这些是胡瑗商讨教学法在新课程背景下的体现。
(3)因材施教法由孔子创造,但胡瑗继承并发展了这一教学方法。本课例题的教学有两种不同的思路与解题方法,让学生根据自己的知识基础选择自己合适的方法解答,有利于不同层次的学生都有提高与发展,其实也是因材施教教育的一种体现。
【《列方程解应用题》教案(精选3篇)】相关文章:
《其多列》教案04-25
初中数学列代数式教案设计03-16
两步应用题教案04-02
户列簪缨的成语解释05-13
那列飞奔的“高铁”作文05-08
白居易《窗中列远岫》赏析09-02
格列弗游记的梗概作文01-13
《列方程解决实际问题》教学反思03-30
找列幸福的小女孩作文03-06
《三步应用题》教学设计【精选】03-25