- 相关推荐
中考数学专题解题方案(精选7篇)
为了确保事情或工作能无误进行,常常需要提前准备一份具体、详细、针对性强的方案,方案是解决一个问题或者一项工程,一个课题的详细过程。那么应当如何制定方案呢?下面是小编为大家整理的中考数学专题解题方案(精选7篇),仅供参考,希望能够帮助到大家。
中考数学专题解题方案1
1、选题
①中考试题具有良好的教学导向功能,既引导学生学会学习,乐于科学探究,乐于在生活中用数学;又引导我们数学教师积极投身到数学课程改革中去,努力改进初中数学教学,研究如何按照中考试题的要求把握平时练习、复习。因此可以收集历年来有代表性的中考数学压轴题,并进行分类整理以专题的形式进行复习;
②“试题源于课本”已成为历年中考的命题原则,具有良好的导向作用。因此在最后的复习阶段可以对课本的例、习题或者一些经典的历年试题在认真研究的基础上加以变式再创造,在复习教学中开展陈题新解,以一题多解、一题多变、多题一解等的形式将知识串联,方法归纳,以少胜多,提高学生的解题能力。
2、学生的解题策略
在每一次的考试中,我们都会发现有部分基础较好的学生对于压轴题的`解答得分率也不高,认真分析、究其原因主要是会而不对,对而不全,全而不美的问题。因此应该让学生向错误学习,放手让学生自己去搞点讲评,建立错题档案,对于错的题目进行反复训练。对于综合性的压轴题,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,最佳解法是什么?当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误。切实解决会而不对,对而不全,全而不美的问题;
3、学生书写的规范性
每次考试之后总会发现:有部分学生在解最后一题的压轴题时,解题步骤不规范,导致失分;甚至由于第1小题书写不规范,导致自己在做后面的小题时,抄错而不得分。因此我们在平时的教学中要讲清楚每一题中每一步的评分标准,要舍得时间让学生在课堂上把一道题解答完整,并认真批改,及时纠错;而最重要的就是要严格要求每一次作业中的书写过程,认为不过关的坚决要求重写,慢慢养成习惯。杜绝平时因时间不够而重答案轻过程;
4、处理好压轴题与其他知识复习的关系
由于压轴题的难度较高,因此在专题复习中针对的都是基础较好的学生,而对于基础较差的学生有可能对此失去兴趣,成绩下滑。所以在最后的一个月复习中,我校打算压轴题的专题、基础知识的进一步整理、综合模拟三部分交叉进行,照顾到各层次的学生,让他们都有所收获。
中考数学专题解题方案2
为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场。
1.配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2.因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3.换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的.一个部分或改造原来的式子,使它简化,使问题易于解决。
4.判别式法与韦达定理
一元二次方程aX2+bX+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5.待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。
6.构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
中考数学专题解题方案3
1.学会运用数形结合思想
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2.学会运用函数与方程思想
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的'图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3.学会运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:
(1)分类中的每一部分是相互独立的;
(2)一次分类按一个标准;
(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏。
4.学会运用等价转换思想
转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5.要学会抢得分点
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。
解中考数学压轴题,一要树立必胜的信心;二要具备扎实的基础知识和熟练的基本技能;三要掌握常用的解题策略。
中考数学专题解题方案4
1、配方法
所谓的配方法公式是就是把一个解析式利用恒等变形的方法,将一些术语匹配成一个或几个多项式正整数幂的形式。通过公式求解数学问题的方法称为匹配方法。其中,常用的是匹配成完全扁平的方式。匹配方法是数学中身份转换的重要方法。它广泛应用于因子分解,简化,方程解,方程和不等式明,函数极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分的乘积。因子分解是身份变形的基础,在解决代数,几何和三角问题中起着重要作用。因子分解的方法很多,除了中学教科书上关于公因子法的提取,公式法,分组分解法,交叉乘法法等,还有诸如使用术语加法,根分解等,,未确定系数等。
3、换元法
换元法是数学中非常重要且广泛使用的方法。我们通常将未知或变量称为元素。所谓的替换方法是用新变量替换原始公式的一部分,或者在相对复杂的数学公式中修改原始公式,以简化它并使问题易于解决。
4、判别方法和韦达定理
一元二次方程ax2+bx+c=0(a,b,c属于R,a≠0)根辨别,delta=b2-4ac,不仅用于确定根的性质,而且作为一种求解方法问题,代数变形,解方程(群),解不等式,研究函数甚至几何,三角运算具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果首先确定结果的欲望有一定的形式,其中包含一些未确定的系数,然后根据未确定系数方程组的设定条件,解决这些未确定的系数值或找到这些系数之间的关系未确定系数,从而解决数学问题,这种问题解决方法称为未确定系数的方法。它是中学数学中常用的方法之一。
6、反法
反法是间接明。这是一种方法,通过这种方法首先提出与的`结论相反的设,然后,从这个设,通过正确的推理,导致矛盾,从而否定相反的设,从而肯定了正确性。原始。矛盾明可以分为矛盾的简化荒谬明(结论的反面只有一种)和矛盾的穷举明(结论的反面不止一种)。通过矛盾明的步骤一般分为:(1)反设;(2)减少;(3)结论。
7、面积法
平面几何中的面积公式和与面积公式导出的面积计算相关的属性定理不仅可以用于计算面积,而且还可以明平面几何问题有时会得到两倍的结果。使用面积关系来明或计算平面几何问题称为面积法,这是几何中的常用方法。
8、客观问题解决方法
多项选择题是提供条件和结论的问题,需要基于某种关系的正确。选择题设计精巧,形式灵活,可以全面检验学生的基本知识和技能,从而提高考试的能力和知识的覆盖面。
中考数学专题解题方案5
选择题的解法
中考数学试题主要是为了凸现能力,小题一般要小做,除了直接法解答外,还要注意巧解,各位同学在做中考数学选择题时善于使用数形结合、特值(含特殊值、特殊位置、特殊图形、特殊角度、特殊体等等)、排除、验证、转化、分析、估算等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,如果确实没有思路,可先蒙一个,并做标记,即使是“蒙”也有25%的胜率,后面有剩余时间可以选择重新做。
填空题的解法
由于中考数学填空题和选择题有相似之处,所以有些解题方法、策略可以共用。中考数学填空题要认真运算,表达结果必须数值准确、形式规范,否则将前功尽弃,因为填空题无过程分。
函数型综合题
此类中考数学解答题是将定直角坐标系和几何图形直接给中考考生,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题
此类中考数学解答题是先给中考考生规定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
中考数学压轴题
中考数学试卷中的压轴题是很多中考考生所苦恼的,在回答中考数学压轴题时需要掌握的答题技巧有以下几点:
1、压轴题难度有约定:历年的中考数学压轴题一般都由3个小题组成。第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。
2、分析结构理清关系:解决中考数学压轴题时,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的'解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
3、应对策略必须抓牢:学生害怕“中考数学压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。我认为压轴题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。
中考数学专题解题方案6
1、做题时间规划
考试写不完,大部分时间花在难题上,建议1到18题25分钟做完,中考第12题或16题若卡住了,思考时间不要多于5分钟,因为做题前5分钟效率是最高的,5到10分钟左右焦虑情绪明显上升,10分钟以后已经不再想题了,而在思考做不出的严重后果,遇到难题该跳则跳。
2、避免审题丢分
考试中存在很多由于审题不仔细(多看条件、少看条件、看错条件)丢分案例。为什么会这样呢?因为我们平时做题太多,遇到类似题,审题就会思维定势,先入为主,主观臆断,不假思索认为是以前做过的题,如在抛物线对称轴上找点很可能看成在抛物线上找点或者在y轴上找点;运动方向大部分题是由下往上,从左往右,习惯性以为都这样已知的;点在直线或线段上等等。一旦审错题浪费时间更多,所以审题不要着急,一个字一个字读,耐得住这份心,才能审好题。
3、学会检查
检查要专注,考查一个人的定力,有没有耐心复查已经做过的题。当然还要检查答题卡客观题有没有誊错、格式有没有按照规定(分式方程检验、带单位、要写解和证明,分类讨论要写综上所述等等)。
最后检查计算,检查的时候要注意摆正心态。
4、遇到中档题卡住怎么办?
保持冷静,影响你的.不是题目本身,而是心中杂念,这个时候跳出思维的漩涡,不应该怀疑自己的能力,更应该怀疑的是审题错了,果断重新审题,或者尝试常规解题方法。
5、争取多拿意外的分
阅卷老师一般是先找答案,答案正确再看步骤,步骤不严谨扣1-2分,找不到答案或答案错误再重头看有没有能给分的,所以书写要规范、整洁。
中考数学专题解题方案7
大胆取舍――确保中考数学相对高分
“有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。”针对中考数学如何备考,著名数学特级老师说,这几个月的备考一定要有选择。
“首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,一定要立足于基础和难易度适中,太难的可以放弃。在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的题认真做一做,把根本没有感觉的难题放弃不做。千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精力。”
做到基本知识不丢一分
某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
“首先要梳理知识网络,思路清晰知己知彼。思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。”他说,“其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。根据考纲和自己的`实际情况来侧重复习,也能提高有限时间的利用效率。”
做好中考数学的最后冲刺
广州中考研究中心老师表示,距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。
压轴题坚持每天一道,并及时总结方法,错题本就发挥作用了。最后每周练习一套中考模拟卷,及时总结考试问题。我们做题的原则是先搞懂搞透错题,再做新题。如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。
中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。最后要明白决定中考成败的不是压轴题而是简单题,千万不要在难题上不舍得,做到会做的题不丢分就好,这就需要你平时做题专注用心。
平时养成好的答题习惯
练兵千日,用在一时,关于中考应考技巧有几点做法:解题习惯要端正,由于是电脑阅卷,所以平时答题时就养成左对齐按列写的答题习惯;阅题习惯的养成,中考都会提前发卷,考生可利用这段时间,将试卷浏览一遍,大致了解题量、题型,了解试题的难易度,做到心中有数,通览全卷,把握全局。答题习惯上,先易后难,合理支配答题时间。进入考场后考生特别紧张,可轻拍几下额头,做几个深呼吸,紧张的情绪就会得到缓解。
【中考数学专题解题方案】相关文章:
高考数学解题攻略09-26
中考散文阅读的解题技巧09-24
高考数学解题方法总结08-24
初中数学解题技巧08-23
初中数学解题方法小结09-18
数学常用的几种经典解题方法03-30
专题策划方案12-15
专题培训方案06-02
专题培训方案07-01
专题活动方案04-22