有理数的乘方教案
作为一位杰出的教职工,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?下面是小编帮大家整理的有理数的乘方教案,欢迎阅读与收藏。
有理数的乘方教案1
教学目标:
1、知识与技能:
了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。
2、过程与方法:
在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。
重点、难点:
1、重点:用科学记数法表示绝对值较大的数。
2、难点:熟练用科学记数法表示绝对值较大的数。
教学过程:
一、创设情景,导入新课
太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。
二、合作交流,解读探究
1、填空
= , = , =
2.8×= ,2.8×= ,2.8×=
2、学生探究:从前面的填空可知:
100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×
从上面你能发现什么规律吗?
(1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。
三、应用迁移,巩固提高
1、做一做:课本P44例2
解答见教材,注意10的指数比原数的整数位少1
2、科学记数法:把一个绝对值大于10的数记成的'形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。
3、做一做:用科学记数法表示下列各数:
(1) 108000;(2)-3200000
两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。
4、P44练习第1、2、3题
四、总结反思
用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。
五、作业:P45习题1.6A组第3、4、5题
有理数的乘方教案2
一、 学什么
1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、 怎样学
归纳概念
n个a相乘aaa= ,读作: 。 其中n表示因数的个数。
求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。
例1:计算
(1)26 (2)73 (3)(3)4 (4)(4)3
例2:(1) ( )5 (2)( )3 (3)( )4
【想一想】1.(1)10,(1)7,( )4,( )5是正数还是负数?
2.负数的幂的符号如何确定?
思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算 ( 2)20 09 +(2)20xx
3、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样
1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成( )
A 8个 B 16个 C 4个 D 32个
2.一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )
A ( )3m B ( )5m C( )6m D( )12 m
3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是 。
4.计 算
(1)(3)3 (2)(0.8)2 (3)02004 (4 )12004
(5)104 (6)( )5 (7)-( )3 (8) 43
(9)32(3)3+(2)223 (10)-18(3)2
5.已知(a2)2+|b5|=0,求(a)3( b)2.
2.6有理数的`乘方(第2课时)
一、学什么
会用科学计数法表示绝对值较大的数。
二、怎样学
定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。
例题教学
例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
(1)10000000 (2) 57000000 (3) 123000 0000 00
例3.写出下列用科学记数法表示的数的原数。
2.31105 3.001104
1.28103 8.3456108
思考:比较大小
(1)9.2531010 与1.0021011
(2)7.84109与1.01101 0
学怎 样
1.用科学记数法表示314160000得 ( )
A.3.1416108 B. 3.1416109 C. 3.1416101 0 D. 3.1416104
2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为( )
A.1.051010吨 B. 1.05109吨 C.1.051 08吨 D. 0.105101 0吨
3.人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为 ( )
A.3108 B. 3107 C.3106 D. 0.3108
4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为 。
5 .比较大小:
10.9 108 1.11010 ; 1.11108 9.99107 .
6.用科学记数法表示下列各数。
(1)32000 (2) -80000000 000 (3)2895.8 (4)- 389999900000000
有理数的乘方教案3
【回顾思考】
1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。
2、请合上课本,试着回答下列问题:
(1)说说什么是乘方?什么是幂?有什么符号法则?
(2)在做有理数的混合运算时运算顺序怎样?
(3)举例说明什么是科学记数法?
(4)举例说明如何确定一个数的有效数字?
【基础训练】
一、填空:
1、根据乘方的意义,(-3)4=;-34=.
2、的平方等于它本身;的立方等于它本身。
3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。
4、若(a-1)2+︳b+2︳=0,那么a+b=。
5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。
6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)
一、填空:
1、若x20xx=1,则x20xx+2005=。
2、平方等于1/16的数是,立方等于-27的'数是,立方后是本身的数有。
3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。
4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。
5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。
6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。
7、3.16×106原数为,精确到位。
8、写出3,-9,27,-81,243,…这行数的第n个数。
二、选择:
1、若规定a⊕b=(a+1)b,则1⊕3的值为()
(A)1(B)3(C)6(D)8
2、(-2)11+(-2)10的值是()
(A)-2(B)(-2)21(C)0(D)-210
3、下列语句中,正确的个数是()
①任何小于1的有理数都大于它的平方
②没有平方得-9的数
二、选择:
1、下列各组数中,不相等的是()
(A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣
2、(-2)11+(-2)10的值是()
(A)-2(B)(-2)21(C)0(D)-210
3、下列各式中正确的是()
(A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣
4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()
(A)3×106(B)0.3×107(C)3×107(D)0.3×108
5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()
(A)0.1(精确到0.1)(B)0.05(精确到百分位)
(C)0.05(精确到千分位)(D)0.0502(精确到0.0001)
三、计算:
1、8+(-3)2×(-2)
2、100÷(-2)2-(-2)÷(-2/3)
3、(-0.25)20xx×(-4)20xx×(-1)20xx
列方程解应用题的基本关系量:
(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度
(2)工程问题:工作效率×工作时间=工作量
(3)浓度问题:溶液×浓度=溶质
(4)银行利率问题:免税利息=本金×利率×时间
有理数的乘方教案4
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入 新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的.幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
有理数的乘方教案5
三维目标
一、知识与技能
掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
二、过程与方法
通过例题学习,发展学生观察、归纳、猜想、推理等能力。
三、情感态度与价值观
体验获得成功的感受、增加学习自信心。
教学重、难点与关键
1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算。
2.难点:灵活应用运算律,使计算简单、准确。
3.关键:明确题目中各个符号的意义,正确运用运算法则。
四、课堂引入
1.我们已经学习了哪几种有理数的`运算?
2.有理数的乘方法则是什么?
五、新授
下面的算式里有哪几种运算?
3+5022(-)-1 ①
这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?
有理数的混合运算,应按以下运算顺序进行:
1.先乘方,再乘除,最后加减;
2.同级运算,从左往右进行;
3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如上面①式
3+5022(-)-1
=3+504(-)-1
=3+50(-)-1
=3--1
=-
例3:计算:(1)2(-3)3-4(-3)+15;
(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。
分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。
解:(1)原式=2(-27)-(-12)+15
=-54+12+15
=-27
(2)原式=-8+(-3)(16+2)-9(-2)
=-8+(-3)18-(-4.5)
=-8-54+4.5=-57.5
例4:观察下面三行数:
-2,4,-8,16,-32,64,①
0,6,-6,18,-30,66, ②
-1,2,-4,8,-16,32, ③
(1)第①行数按什么规律排列?
(2)第②、③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。
有理数的乘方教案6
学习目标
知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。
过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。
情感态度价值观:
鼓励猜想,倡导参与,学会倾听,建立自信心。
学习重点:理解有理数乘方的意义和表示,会进行乘方运算。
学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。
学习方法:
探究归纳法
过程设计:
一自主研学
1求n个()的运算叫做乘方,乘方的结果叫做()
2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。
3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。
二合作互学
知识点1:有关乘方的概念
1(--3)4表示的意义是(),,底数是(),指数是(),结果是()
243的底数是()指数是(),表示的意义是(),结果等于()。
知识点2乘方的运算
3计算0.0012=();(--?)=()
知识点3乘方的读法
4(--2)5读作();---25读作()
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
三自觉练学
1(--3)3=(),--52=()
2立方等于8的数是(),平方等于16的数是()
3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。
4(--3×5)2=();--(--2)4=()
5(--1)20xx=()
6下列说法正确的`是()
A一个有理数的平方是非负数。B一个有理数的平方是正数。
C一个有理数的平方大于这个数。D一个有理数的平方大于这个数的相反数。
7把--(--?)(--?)(--?)(--?)写成乘方的形式是()
8下列各对数中,值相等的是()
A--32与--23B--23与(--2)3C--32与(--3)2D(--3)×2与--3×22
9计算下列各题
(1)(--?)3(2)--(--3)3(3)8×(--?)2
(4)(--1)100×(--1)3(5)(--?)3×(--16)
10阅读材料并解决问题
你能比较两个数20112012和20122011的大小吗?
为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。
(1)计算比较
12--------2123-------3234--------4345-------5456---------65
(2)从上面各小题结果归纳,可以猜想什么结论?
(3)根据归纳猜想的结论比较20112012和20122011的大小。
有理数的乘方教案7
教学目标
1?理解有理数乘方的概念,掌握有理数乘方的运算;
2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3?渗透分类讨论思想?
教学重点和难点
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
课堂教学过程设计
一、从学生原有认知结构提出问题
在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?
在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?
二讲授新课
1?求n个相同因数的积的运算叫做乘方?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
3.我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?
例1 计算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
让三个学生在黑板上计算?
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?
课堂练习
计算:
(1) , , ,- , ;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
三、小结
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
四、作业
1?计算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的`值?
课堂教学设计说明
1?数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?
2?数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,,an是学生通过类推得到的?
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?
3?把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?
4?有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?
有理数的乘方教案8
一、知识与技能
(1)正确理解乘方、幂、指数、底数等概念。
(2)会进行有理数乘方的运算。
二、过程与方法
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
三、情感态度与价值观
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键
1.重点:正确理解乘方的意义,掌握乘方运算法则。
2.难点:正确理解乘方、底数、指数的概念,并合理运算。
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
四、课堂引入
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
五、新授
边长为a的正方形的`面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
【有理数的乘方教案】相关文章:
《有理数的乘方》教学设计06-05
有理数的乘方的教学反思07-16
有理数的乘方教学设计(精选11篇)10-14
幂的乘方与积的乘方教案设计06-19
数学有理数教案范本05-31
《幂的乘方》的教学设计07-02
有理数复习的教案设计06-02
有理数的复习教学反思06-28
有理数章节教学总结06-02
《有理数的除法》教学设计07-02