高一数学知识点总结
高一数学知识总结
必修一
一、集合
一、集合有关概念
- 集合的含义
- 集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
- 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
- 列举法:{a,b,c……}
- 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2}
- 语言描述法:例:{不是直角三角形的三角形}
- Venn图:
4、集合的分类:
有限集 含有有限个元素的集合
无限集 含有无限个元素的集合
空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A≠ B那就说集合A是集合B的真子集,记作AB(或BA)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
- 有n个元素的集合,含有2n个子集,2n-1个真子集
二、函数
1、函数定义域、值域求法综合
2.、函数奇偶性与单调性问题的解题策略
3、恒成立问题的求解策略
4、反函数的几种题型及方法
5、二次函数根的问题——一题多解
&指数函数y=a^x
a^a*a^b=a^a+b(a>0,a、b属于Q)
(a^a)^b=a^ab(a>0,a、b属于Q)
(ab)^a=a^a*b^a(a>0,a、b属于Q)
指数函数对称规律:
1、函数y=a^x与y=a^-x关于y轴对称
2、函数y=a^x与y=-a^x关于x轴对称
3、函数y=a^x与y=-a^-x关于坐标原点对称
幂函数y=x^a(a属于R)
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数
2、幂函数性质归纳。
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数。在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴。
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
(代数法)求方程的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
三、平面向量
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
四、三角函数
1、善于用“1“巧解题
2、三角问题的非三角化解题策略
3、三角函数有界性求最值解题方法
4、三角函数向量综合题例析
5、三角函数中的数学思想方法
15、正弦函数、余弦函数和正切函数的图象与性质:
函 数 性 质 | |||
图象 | |||
定义域 | |||
值域 | |||
最值 | 当时,;当 时,. | 当时, ;当 时,. | 既无最大值也无最小值 |
周期性 | |||
奇偶性 | 奇函数 | 偶函数 | 奇函数 |
单调性 | 在 上是增函数;在 上是减函数. | 在上是增函数;在 上是减函数. | 在 上是增函数. |
对称性 | 对称中心 对称轴 | 对称中心 对称轴 | 对称中心 无对称轴 |
必修四
角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角.
第一象限角的集合为
第二象限角的集合为
第三象限角的集合为
第四象限角的集合为
终边在轴上的角的集合为
终边在轴上的角的集合为
终边在坐标轴上的角的集合为
3、与角终边相同的角的集合为
4、已知是第几象限角,确定所在象限的方法:先把各象限均分等份,再从轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.
5、长度等于半径长的弧所对的圆心角叫做弧度.
口诀:奇变偶不变,符号看象限.
(以上k∈Z)其他三角函数知识:
同角三角函数基本关系
⒈同角三角函数的基本关系式商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα tanβ
倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
万能公式
⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
和差化积公式
⒎三角函数的和差化积公式
α+β α-β
sinα+sinβ=2sin—----cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----sin—-----
2 2
【高一数学知识点总结】相关文章:
数学高一年级下册知识点06-02
高一数学的教学总结07-16
高一年级数学《立体几何》知识点06-02
高一数学的教学总结范文09-07
高一数学计划总结范文05-31
有关高一数学教学的总结范文05-05
有关高一数学教学的总结范文05-05
有关高一数学教学的总结范文05-05
有关高一数学教学的总结范文05-05
有关高一数学教学的总结范文05-05