实用文档>《运算律》教学片断与反思

《运算律》教学片断与反思

时间:2024-07-21 13:39:41

《运算律》教学片断与反思

《运算律》教学片断与反思

《运算律》教学片断与反思

  教学片断

  (根据问题情境得出28+17=17+28后)

  师:仔细观察左右两道算式,你有什么发现?

  生:我发现两个加数的位置调换了。

  生:我发现两个加数的位置交换后,和是不变的。

  师:是不是所有加法算式中交换加数的位置,和都不变呢?

  生:是。

  生:不是。

  师:接下来,请大家举例验证。老师给大家提几条建议:(1)自己举例、计算。(2)小组交流:是否存在例外的情况?(3)推荐一名代表上台展示验证实例。

  (学生举例交流)

  生:23+17=4017+23=4017+23=23+40、45+50=50+40、300+540=540+300

  师:加法算式中加数的位置换了,和有不相等的例外情况吗?

  生:没有。

  师:从这些例子中,你可以发现什么规律?

  生:两个加数的位置交换后,和是不变的。

  生:我也发现交换两个加数的位置,和不变。

  师:你能用自己喜欢的方法表示出这一发现吗?

  生:甲+乙=乙+甲

  生:△+○=○+△

  生:□+○=○+□

  生:a+b=b+a

  师:你们想的办法真多。用字母表示数是数学学习中的重要策略,用a、b表示两个加数,这个规律可以写成a+b=b+a。

  师:你能帮这个规律取个名吗?

  师:在加法交换律中,变化的是(两个加数的位置),不变的是(它们的和)。原来变与不变还可以这样巧妙地结合在一起的。

  教后反思

  苏霍姆林斯基指出:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要更为强烈。”在这种思想的指导下,我在加法交换律的教学中,注意充分发挥学生的主体作用,引导学生经历规律的不完全归纳的过程,让学生在自主探究中体验探索与创造的快乐,从而在一种自然而然的心理需求下发现并总结出属于自己的运算律。

  在教学时,我注意了以下几方面的问题:

  一是在猜测中产生举例验证的心理需求。在学生根据问题情境得出28+17=17+28之后,学生通过观察发现交换两个加数的位置,和不变。我适时提出这样的问题:“是不是所有加法算式中交换加数的位置,和都不变呢?”学生的猜想不一,有了举例验证的内在需求。

  二是注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生小组交流、全班交流,达到资源共享,丰富了学习材料和数学事实,知识的归纳顺理成章。

  三是鼓励学生用喜欢的方法表示规律。学生思维的浪花又一次激起,有图形表示的,有文字表示的,也有字母表示的。既是对加法交换律的概括与提升,又能发展符号感。

  四是注意不断为后继学习作准备。除了前面提到的举例验证和用不同方式表示运算律,还有当学生总结归纳出加法交换律后,让学生再次观察加法交换律中的变与不变,既深化了对加法交换律的认识,又为学生后继学习规律作了充分准备,提高学生探索规律的能力。

【《运算律》教学片断与反思】相关文章:

四则运算教学反思03-19

四则运算教学反思03-19

《天窗》公开课教学片断反思(精选13篇)02-21

《分数混合运算(二)》教学反思(精选14篇)05-01

《数和数的运算》的教学设计03-14

《乘法分配律》教学设计02-23

整数乘法运算定律推广到小数课程教学后的反思(通用10篇)06-08

《乘法运算定律》的课堂教学设计02-16

《运算定律和简便计算复习课》教学设计(精选11篇)04-29

《On the farm》的教学反思02-27

用户协议