《相切在作图中的应用》教案
《相切在作图中的应用》教案
《相切在作图中的应用》教案
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础.
难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置的确定.
2、教法建议
(1)在教学中,组织学生寻找一些身边的有关“连接”的实际问题,画出比例图,既调动学生的积极性,培养了兴趣,又获得了知识;
(2)在教学中,以“实际问题——概念引出——理解——实际应用”为主线,开展在教师组织下,以学生为主体,活动式教学.相切在作图中的应用(一)
教学目标:
(1)理解线段与弧、弧与弧连接的概念及连接的原理;
(2)通过对 “连接”等概念的教学,培养学生的理解能力;
(3)通过线段与弧的连接,圆弧与圆弧的连接,培养学生的作图能力;
(4)“渗透”世界上很多事物是互相联系着的,并且在一定条件下相互转化.
教学重点:
正确理解连接的原理,初步掌握线段与圆弧连接、圆弧与圆弧连接的实质,会进行各种连接.
教学难点:
连接原理的正确理解和作图时圆心、半径的确定
教学活动设计:
(一)实际问题引出概念
我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.
想一想:跑道线是怎样的线组成的?
画一画:跑道的大致图形.
指导学生发现线线的位置关系,引出连接的有关概念:
1、由一条线(线段或圆弧)平滑地过渡到另一条线上,这种平滑地过渡,称圆弧连接,简称连接.
2、连接时,线段与圆弧、圆弧与圆弧在连接处相切.
3、外连接、内连接.
组织学生阅读理解教材内容
(二)深刻理解概念
“连接”是“平滑地过渡”,怎样算“平滑“?像下面图中,实线画出的线段和圆弧,圆弧和圆弧,虽然也有相切的关系,但它们不是连接.
理解:线与线连接有两个必备条件:①连接时,线段与圆弧,圆弧与圆弧在连接处相切.②线段与圆弧应分居在圆心与切点所在直线的两侧;圆弧与圆弧分居在连心线的两侧,二者缺一不可.
(三)圆弧与线段、圆弧与圆弧连接图形的画法
例1: 已知:线段AB和r(如图).
求作:,使它的半径等于r,,并且在点A与线段AB连接.
作法:1、过点A作直线PA⊥AB.
2、在射线AP取AO=r.
3、以O为圆心,r为半径作,使AB、在OA的两侧.
就是所求作的弧.
说明:画圆弧与线段的连接,主要运用了切线的性质定理的推论2:经过切点且垂直于切线的直线必过圆心,找出了圆心,圆弧也就不难画了.
【《相切在作图中的应用》教案】相关文章:
数学教案:相切在作图中的应用05-13
《比的应用》教案06-17
《杠杆的应用》教案06-22
《用橡皮筋作动力》教案06-20
静电现象的应用教案06-22
数列的综合应用教案06-22
乘法的应用教案手机06-23
密度知识的应用教案06-20
摘选磁的应用教案06-20