高一必修二数学复习笔记

时间:2024-06-26 08:49:31 笔记 我要投稿
  • 相关推荐

高一必修二数学复习笔记

高一必修二数学复习笔记1

  数列

高一必修二数学复习笔记

  (1)数列的概念和简单表示法

  ①了解数列的概念和几种简单的'表示方法(列表、图象、通项公式).

  ②了解数列是自变量为正整数的一类函数.

  (2)等差数列、等比数列

  ①理解等差数列、等比数列的概念.

  ②掌握等差数列、等比数列的通项公式与前项和公式.

  ③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

  ④了解等差数列与一次函数、等比数列与指数函数的关系

高一必修二数学复习笔记2

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的'高相等,它叫做正棱锥的斜高。

  (2)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高一必修二数学复习笔记3

  柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的`平方.

  (3)棱台:

  几何特征:

  ①上下底面是相似的平行多边形

  ②侧面是梯形

  ③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:

  ①底面是全等的圆;

  ②母线与轴平行;

  ③轴与底面圆的半径垂直;

  ④侧面展开图是一个矩形.

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:

  ①底面是一个圆;

  ②母线交于圆锥的顶点;

  ③侧面展开图是一个扇形.

  (6)圆台:

  定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:

  ①上下底面是两个圆;

  ②侧面母线交于原圆锥的顶点;

  ③侧面展开图是一个弓形.

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:

  ①球的截面是圆;

  ②球面上任意一点到球心的距离等于半径.

高一必修二数学复习笔记4

  数列的定义

  按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。

  (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。

  (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:—1的1次幂,2次幂,3次幂,4次幂,…构成数列:—1,1,—1,1,…。

  (3)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。

  (4)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。

  函数的性质:

  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(—x)的关系。f(x)—f(—x)=0f(x)=f(—x)f(x)为偶函数;f(x)+f(—x)=0f(x)=—f(—x)f(x)为奇函数。

  判别方法:定义法,图像法,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x—a),则2a为函数f(x)的周期。

  应用:求函数值和某个区间上的函数解析式。

  证明垂直的方法

  可以直接证明它们的夹角为90°;证明其它两个角互余。如果是高中生的话,还可以证明两条直线的斜率的乘积等于—1,常见的有:等腰三角形的顶角平分线或底边的中线垂直于底边;三角形中一边的中线若等于这边一半,则这一边所对的角是直角;在一个三角形中,若有两个角互余,则第三个角是直角;邻补角的平分线互相垂直。

  垂直,是指一条线与另一条线相交并成直角,这两条直线互相垂直。通常用符号“⊥”表示。

  设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。

  对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的.问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。

  ①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。

  ②连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

  ③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

【高一必修二数学复习笔记】相关文章:

高一数学必修二知识点笔记梳理04-19

高一数学必修一知识点归纳笔记04-26

人教版高一物理必修二知识点笔记05-08

高一数学必修二知识点总结11-08

数学必修复习导学案设计07-04

高一数学必修2教案08-16

高一语文必修二教案09-27

关于高一数学必修一教案04-28

高一数学必修1教学反思04-11

高一数学必修3映射教案08-12