高中数学选择题的解法

时间:2023-07-19 16:28:02 瑞文头条 我要投稿
  • 相关推荐

高中数学选择题的解法

  高中三年数学要学得好,能为高考创造更多的分,但很多女生甚至文科生数学成绩都偏低,对于各种公式都表示看不懂。以下是小编帮大家整理的高中数学选择题的解法,希望对大家有所帮助。

高中数学选择题的解法

  高中数学选择题的解法

  1、特值检验法:

  对于一些比较常见的数学问题,我们在解题的过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  例:

  △ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为( )

  A.-5/4 B.-4/5 C.4/5 D.2√5/5

  解析:

  因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B.

  2、极端性原则:

  在处理一些比较难度较大的题目时,我们可以将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

  3、剔除法:

  在做数学选择题时,比较安全或者说比较快速的方法就是剔除法。利用已知的条件和题目所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种比较常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除掉。

  有很多同学看到题目似乎很难就选择放弃,其实做数学题我们也可以灵活处理,一定要记住,在做选择题时,并不一定要证明一个答案是对的,你只要证明其他三个是错的就行了。

  4、数形结合法:

  数形结合也是做数学题非常常用的一种方法,正所谓有图有证据,学会根据题意画出相符的图形,能为解题带来更加清晰的思路。

  由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  5、递推归纳法:

  递推归纳法也是做数学题比较典型的一种方法,多用于解数列、概率等题型。

  通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

  6、顺推破解法:

  顺推破解法是解题中最直接的一种方法,利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

  例:

  银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户。为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为( )

  A.5% B.10% C.15% D.20%

  解析:

  设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α

  解出0.1≤χ≤0.15,故应选B.

  7、逆推验证法(代答案入题干验证法):

  将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

  例:

  设集合M和N都是正整数集合N*,映射f:M→把集合M中的元素n映射到集合N中的元素2n+n,则在映射f下,象37的原象是( )

  A.3 B.4 C.5 D.6

  8、正难则反法:

  从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

  9、特征分析法:

  对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

  例:

  256-1可能被120和130之间的两个数所整除,这两个数是:__、__

  A.123,125 B.125,127 C.127,129 D.125,127

  解析:

  初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C.

  10、估值选择法:

  有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

  总结:

  高考中的选择题一般都是送分题或中档题,个别题属于较难题,当中的大多数题的解答不需要用计算、或者按做答题的方式去解题,可用特殊的方法快速的选择。

  例如:估值选择法、特值检验法、顺推破解法、数形结合法、特征分析法、逆推验证法等都是常用的解法。

  注意:

  选择题的四个选择支中有且仅有一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。

  高中数学选择题答题方法

  选择题答案是四选一,只有一个正确答案,所以除了按部就班的解题方法外,还需要注意一些解题策略。

  首先,要认真审题

  做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。

  其次,要注意解题方法。

  做题时除了按照解答题的思路直接来求以外,还要注意一些特殊的方法,比如说特殊值法,代入法,排除法,验证法,数形结合法等等。

  直接法。有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由概念、公式、定理及性质出发,按照做解答题的方法一步步来求。我们在做解答题时大部分都是采用这种方法。排除法。选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

  验证法。通过对选择支的观察,分析,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。特殊值法。有些选择题用常规方法求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

  数形结合法。也叫图象法。有些选择题用代数方法解计算较繁,但若能根据题意,做出草图,然后根据图形的形状、位置、性质、综合特征等,由图形的直观性得出选择题的答案。选择题的解题方法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种特殊方法综合运用。还有,在做选择题的过程中,遇到关键性的词语可用笔做个记号,以引起自己的注意,比如说至少,没有一个,至多一个等等。第一遍没做的题也要做个记号,但要注意与其它记号区分开来,这样不容易遗漏。最后,做完题后要仔细检查,有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。

  影响高中数学成绩的原因及解决方法

  面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面、

  1、被动学习

  许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权、表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”、没有真正理解所学内容。

  2、学不得法

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法、而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背、也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微、

  3、不重视基础

  一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海、到正规作业或考试中不是演算出错就是中途“卡壳”、

  4、进一步学习条件不具备

  高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃、这就要求必须掌握基础知识与技能为进一步学习作好准备、高中数学很多地方难度大、方法新、分析能力要求高、如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等、客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的、高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动、针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,

  化解分化点为辅的对策:

  1、加强学法指导,培养良好学习习惯

  良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面、

  制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力、但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志、

  课前自学是学生上好新课,取得较好学习效果的基础、课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权、自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上、

  上课是理解和掌握基本知识、基本技能和基本方法的关键环节、“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼、

  及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”、

  独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程、这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”、

  解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程、解决疑难一定要有锲而不舍的精神,做错的作业再做一遍、对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”、

  系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节、小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系、以达到对所学知识融会贯通的目的、经常进行多层次小结,能对所学知识由“活”到“悟”、

  课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等、课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情、

  2、循序渐进,防止急躁

  由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振、针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度、

  3、研究学科特点,寻找最佳学习方法

  数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任、它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高、学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法、华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理、方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的、

  4、加强辅导,化解分化点

  如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点、对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。

【高中数学选择题的解法】相关文章:

高中数学不等式与不等式组的解法10-02

分式方程的解法09-29

不等式的解法?08-28

儿童船折纸大解法04-15

选择题的作文08-25

选择题作文12-03

折纸立体兔子图解法01-18

不等式组的解法过程08-28

创新话题作文:不寻常的解法01-27

选择题答题技巧04-21